Skip to content
Snippets Groups Projects
Commit 5d9ac7e6 authored by Zhaoliang Zheng's avatar Zhaoliang Zheng
Browse files

modify code to detect distance in meters

parent 848b9923
No related merge requests found
......@@ -3,14 +3,15 @@ from urllib.request import urlopen, Request
import numpy as np
import time
import apriltag
# import apriltag
from pupil_apriltags import Detector
def nothing(x):
pass
detector = apriltag.Detector()
# detector = apriltag.Detector()
detector = Detector()
if __name__ == "__main__":
......@@ -19,11 +20,12 @@ if __name__ == "__main__":
# url='http://192.168.4.1/cam-hi.jpg'
# url='http://192.168.1.107/cam-hi.jpg'
url='http://192.168.4.1/cam-mid.jpg'
url = 'http://192.168.1.118/cam-hi.jpg'
# cv2.namedWindow("live transmission", cv2.WINDOW_AUTOSIZE)
cv2.namedWindow("live transmission", cv2.WINDOW_NORMAL)
# cv2.namedWindow("live transmission", cv2.WINDOW_NORMAL)
while True:
header = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36."}
......@@ -36,7 +38,30 @@ if __name__ == "__main__":
#print(len(gray_image.shape))
h,w,_ = frame.shape
results = detector.detect(gray_image )
"""
If you also want to extract the tag pose, estimate_tag_pose should be set to True
and camera_params ([fx, fy, cx, cy])
and tag_size (in meters) should be supplied.
The detect method returns a list of Detection objects each having
the following attributes
(note that the ones with an asterisks are computed only if estimate_tag_pose=True):
"""
"""
So fx and fy are the focal lengths expressed in pixels.
Cx and Cy describe the coordinates of the so called principal
point that should be in the center of the image.
It is e.g. not in the center of the image if you cropped the image,
what you should never do when calibrating.
fx, fy, cx, cy are given in Pixels in Computer Vision ( and openCV)
but e.g. in Photogrammetry you often use mm
"""
fx = 600
fy = 800
cx = 0
cy = 0
results = detector.detect(gray_image,estimate_tag_pose=True,camera_params=[fx, fy, cx, cy],tag_size=0.16)
# loop over the AprilTag detection results
for r in results:
......@@ -47,6 +72,8 @@ if __name__ == "__main__":
ptC = (int(ptC[0]), int(ptC[1]))
ptD = (int(ptD[0]), int(ptD[1]))
ptA = (int(ptA[0]), int(ptA[1]))
tx,ty,tz = r.pose_t
print("tx,ty,tz:{},{},{}".format(tx,ty,tz))
# draw the bounding box of the AprilTag detection
cv2.line(frame, ptA, ptB, (0, 255, 0), 5)
cv2.line(frame, ptB, ptC, (0, 255, 0), 5)
......@@ -56,10 +83,12 @@ if __name__ == "__main__":
(cX, cY) = (int(r.center[0]), int(r.center[1]))
cv2.circle(frame, (cX, cY), 5, (0, 0, 255), -1)
# draw the tag family on the image
print("cX,cY:{},{}".format(cX,cY))
tagFamily = r.tag_family.decode("utf-8")
tid = r.tag_id
cv2.putText(frame, tagFamily, (ptA[0], ptA[1] - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
print("[INFO] tag family: {}".format(tagFamily))
print("[INFO] tag id: {}".format(tid))
# show the output image after AprilTag detection
cv2.imshow("Image", frame)
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment