Skip to content
Snippets Groups Projects
-5-5positionscenario1.ipynb 150 KiB
Newer Older
Tammy1799's avatar
Tammy1799 committed
{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[]},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","source":["import tensorflow as tf\n","import numpy as np\n","from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, Dropout\n","from tensorflow.keras.models import Model\n","from tensorflow.keras.datasets import cifar10\n","from tensorflow.keras.utils import to_categorical\n","\n","from sklearn.model_selection import train_test_split\n","\n"],"metadata":{"id":"uG3R2ERwwYnS","executionInfo":{"status":"ok","timestamp":1702669047053,"user_tz":300,"elapsed":11852,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}}},"execution_count":1,"outputs":[]},{"cell_type":"code","source":["# Load Cifar10 dataset\n","(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n","\n","\n","# Concatenate train and test sets\n","x = np.concatenate((x_train, x_test))\n","y = np.concatenate((y_train, y_test))\n","\n","# Normalize the images\n","x = x.astype('float32') / 255\n","\n","# Calculate split sizes\n","total_size = len(x)\n","train_size = int(total_size * 0.70)\n","val_size = int(total_size * 0.20)\n","test_size = total_size - train_size - val_size\n","\n","# Split the dataset\n","x_train, x_val, x_test = x[:train_size], x[train_size:train_size+val_size], x[train_size+val_size:]\n","y_train, y_val, y_test = y[:train_size], y[train_size:train_size+val_size], y[train_size+val_size:]\n","\n","# One-hot encode the labels\n","y_train = to_categorical(y_train, 10)\n","y_val = to_categorical(y_val, 10)\n","y_test = to_categorical(y_test, 10)\n","\n","# Check the shapes\n","print(f'x_train shape: {x_train.shape}, y_train shape: {y_train.shape}')\n","print(f'x_val shape: {x_val.shape}, y_val shape: {y_val.shape}')\n","print(f'x_test shape: {x_test.shape}, y_test shape: {y_test.shape}')\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"f1HW9kHG5CG4","outputId":"bb509075-4091-499a-c038-5cae55f7180e","executionInfo":{"status":"ok","timestamp":1702669061437,"user_tz":300,"elapsed":14389,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}}},"execution_count":2,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n","170498071/170498071 [==============================] - 3s 0us/step\n","x_train shape: (42000, 32, 32, 3), y_train shape: (42000, 10)\n","x_val shape: (12000, 32, 32, 3), y_val shape: (12000, 10)\n","x_test shape: (6000, 32, 32, 3), y_test shape: (6000, 10)\n"]}]},{"cell_type":"code","source":["import matplotlib.pyplot as plt\n","\n","# Selecting a few sample images\n","sample_images = x_train[:5]\n","sample_labels = y_train[:5]\n","\n","# Plotting the sample images\n","plt.figure(figsize=(10, 2))\n","for i in range(len(sample_images)):\n","    plt.subplot(1, 5, i + 1)\n","    plt.imshow(sample_images[i], cmap='gray')\n","    #plt.title(f\"Label: {sample_labels[i]}\")\n","    plt.axis('off')\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":170},"id":"KlA-Ep0n55zr","outputId":"858259f9-a4a1-4919-99eb-99a7e3c5d029","executionInfo":{"status":"ok","timestamp":1702669062148,"user_tz":300,"elapsed":713,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}}},"execution_count":3,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 1000x200 with 5 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAxsAAACZCAYAAABHTieHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQd0lEQVR4nO29WYwlWX7e94+Iu++5b7VXV9X03tOz9+wcUiSl4SZasg1YgmFYBgwBfvCj7Te/WwYk2AREi4AlA7ZlkqPhDClyhuSs3cNh9/RW3V1dVV1bVlXumTfvfm9sfhgJ0PedQHfOkPcWMfp+b//Me2M5cc6JiMzvO5+XpmlqQgghhBBCCPHXjP+oD0AIIYQQQgjxs4leNoQQQgghhBBTQS8bQgghhBBCiKmglw0hhBBCCCHEVNDLhhBCCCGEEGIq6GVDCCGEEEIIMRX0siGEEEIIIYSYCnrZEEIIIYQQQkyF3Ek/+JnPfwHqdvsQ6qKfON+ZL2Be4JmFCtRL81WoF1s1qAtBHupcseweWICncHjUhnoS4THMtZpQ+3HobHI8HkM9Go2gLpVLUMcWQz0Y9pxtNlsN/EGK35mMJ1AHhuceBAHU9Rq2lZlZtYrtmc/jcQ5pH6lH75q+2x34uKLUg/of/8+/5XxnGvzzr34T6vvXXoF67/Y7znfiGM9n5cyHoD5z8XGo51bPQF0q4/evv/Wis4+7N9+AOuzitQ/oGBpz2P9yJRwTZmYf//TnoH7sMh736BjH3ltXX4U6SfCamZlNQuzDb7/1JtSd9j7U4wmOgXCC/e/wYODsozfAfUQxbmNpaR7quXnsw3HadbYZ0fAcDXE8f+X3/tj5zqxIEnfO+5mBol49D8f9sI/X/+AQ+8/8/JyzyXiC/aNcwb4fFIp4CDQ/JYbHgD3y0eH7s/mb3el1nN/LZbwf8jUyM8v52Ep8rFGC9yGjbbSPO1CX/IKzjyrdN7rjIe6zgte1XMRt8H3LzKzZbEF9dIRz3qSPcwsnE4cT975O3ceCHLZNIY9t06zi/XNtCfv0g50dZxf9CbZno4HfiUI80n7/GOpTG/ScYGb5PLZvLof1//sHrznfmQb/+usvQc3zX7mI19nMrFDCNkwC/EyUYpvnaFQH1D3zWVMu5VKnOdxm6NHv6et+nJFrneLzF1+32Odxk3FczmGm71vzNpKE9kkfyErj5m3yNYpjOm7+fsbPIue4cZv/1a8++b7b/PfoPxtCCCGEEEKIqaCXDSGEEEIIIcRU0MuGEEIIIYQQYiqc2LPx1ttvQd3eJ40uSvPMzMxbwB8uxnX8fXkZ6n6CusweaelSz9WLDkaoTx8MSWseo75sP0DdWynnqtSiCL8TkCa1SNrEwaiP38/QzHujBahJSmsh+UTKOWy7HnknDuPI2UelgtpXz0fdoUceGCP97mDk6lyjEH8W5Fxd5izokGZ3oYX6/3RpxflOmkP969qZC1DHCZ6bn6AOPRlgG4+ODtx9DFGHvrGIffrM6cegPv3YWajXN04521xexnPJ50nn2kKt++lTq/j7yO1/oxHqqNtH6C3Z38f2zRVoQHvYYecW3H5QquI+jjtHUBdLOI6SFNs3n9G3OsdtqCfjLFXpo2FWWv2/iYwHqDU/vH8L6s138PdmZscdnCc//XNfgrpR5psItq9HmuX/2Fo/T769mAxNSewK2r0C3jPHEY459i2wZ6NVx7mmkeGvmHTxuiZDnH8qefSWNCtYV5zrblYr4L1qn+7rSYp1qYRzx9LSorPNoyOcj9h7ub6Gc3dACvblZbzn5DOO+/bmQ6gLeWrPFrZfjZpzoYmePjO33/cHfeczsyAhT0GuiNdowv4fM+sfow8vXyXfFfUNI08o+7Qiz53/Y3puGR3jfahAfSM2HCe9DI+t7+F3alW8LiltIyEvRJZ/io+c/RV8auzZ4LZgy8ePv5PQZ8j38QHHmWS4NpIP8IGclP/Y5mshhBBCCCHEjNDLhhBCCCGEEGIq6GVDCCGEEEIIMRVO7Nko50iDRvLqswuufvHcCurclmmd/TJ7DHgt9zHq4Uch6jTNzFL6ToHWHjfK2UgT3EZz3s054DWVC6Qr5KWKeX34Ma0nb2YWRnicFfpOror7KNHvIw91mn7q6uYiXoeeLlmtiufao7XyQw41MDOfttHtuFrsmUDekckY68HA9Smcu7wBda+PbcjZE/OLlIFB665funTZ2ccLn/wo1Bsr6MFoNpegDnPYeSol16fANiKPdNbDPmpMx9Q2lbLbp+daqEe+eOEJqN95513aKW5zPMa+0qT1483M8mSpOu7gOvSp4TViTerRkatFHg5oPf2/OZYNd530nyH43HwSFG9v3ob6jZe+A3U4dHNY8jXsM0OaSxrzeH9wNMqUu/E3pfWz9NnToED5AR61x9wi+gLNzPp0HfIxejQimls8uu5rqzhvrC65+7h98z2oF3M4j66uo6fMj/C4/Yz2Y//OQhP9nmlAPhDyOlSq7hwY+HiuSyvo6yiRT4TvdVGKc2Kz5forNuh5g2LALJfH3xcpdyKZuL6HRh29h2n4aPJ9OnTfCem+s7/nehrvP9iFOiiRZ6WOc0LR56wd3N4k4xklCfG6DijrqkyeR6NMuO7EzXeaTHDHF85fgvqxi+i9LHOeSIavwfkZnVtKP0jYxMFlxv3nJ70n8dzlZwSGJPbX09/0nw0hhBBCCCHEVNDLhhBCCCGEEGIq6GVDCCGEEEIIMRX0siGEEEIIIYSYCic2iJc8NOHU6/jVyxuuYXShjGa0fIKG3N4hGkbjBN99hhSq5ruZftZo1aDOkbG6TaEyOTrj+bprJOtS+NSEQvuGFCLDxp5aRvBROMGgGT/GA8lTUGAc4z5y5PYej12jVIEcun6C7TfuYaiRxWxWczZpEZmajvuuSX8WRBRK50VopCsWaGEAMzum4MmFVTRvn3kSA/eWT69DnWfHc4Y5LYywT1/bQpPc4NYeft7HPv/um6872/zY42je/tzHPwY1m8A6ZGS8dxeDpczMCnk0sBUKaDpcXEIz/b3NG/j5Ei0uMHTN3J0OtneOAq0aDdzGkMyrGTmVTsBmsZgxCTwiZmUMfhRwaFVICwQ83LwLdYOD2lpo6DUz2z3Cufhg6wHUK6fP4Bco+ZStjx6vXvEzTrOBbcqhdMvLaOY2M9s9wPmoRPeZ46M21CuLuKBFkW4K5TIFw5rZxmk0gFfp/hdOcGAXDMdwseAukjEY4nx/eh3PLc1j/yzQvDCZuAuGLC7QAiBkFB6PcU6r83w1xmPqHtP91MzGY7wvLSziNStX8b6f8/DzuYk7v436uN8o494/C178wUtQ98gw7pvbN4YUwjqKsT/mC1gH9AwY0xAfpe5NIiYjdZUCacsetnmJ+nTsu32l38c2fvmNV6He3cd77IXz56FeXHRDJcsV7E8pLZDCgXsJLQLkUdv8dayWknIIYFYYoUL9hBBCCCGEEH+T0cuGEEIIIYQQYiroZUMIIYQQQggxFU7s2Zgr4kfLpP1sVl3N/FIDNXxxgpo0jq8JcmQa8PFdaJy4WsUcmTBypHOLSWeZBrjN3d22s804xCPrDlCvPIhR41cro/7dxm4wT0AaaA7JCoqoMxz20QtQyeM+chl6vdEIj2tIYTcJqZ7bPdxHe+C2b498M6Pw0byfjgeop62RXrkxj1pjM7Pnn30O6tMXMJinS4FW797ahLpD173Xbjv7OGij5nRrG3W8DQr1Mx89L1/7f37X2Wb+72Mbf/5Tn8Hf5/E6ra6i18RS9E6YmbVJL/+jV9+AOkfBR1UKkorI3zPptZ190NCyJQrxjGncHBzicfrm+qd4fLcygrTEX42sICien/YOsZ/fuXMP6jH9vl5yteeDXgfqa6+jDnr13EWoW6voI2KNcpZk+WfZR7NIoX2snZ6M3DDZFQrlq5TwPl0M8J67tkQhpCHOgQf7GNJmZlYnLwmHoSYTPM48BQT7vnshhwPsK5w15pfwuMfkiRxPXG9hkZ5Zeh2cE6s1nH9YQ39wiHN7Me96M7n7Teg4uj32OeAXJh332WEywfk+yxM6C9o9epaixD0vI2YzR0GJFfJPBD7W7OcZ0VNilPH38S49GwwpvLfoYV+ppdgPOHjRzCxfxHEyomel9zbRb3Z3axvqVsO9T50+hZ7RJRrPrTn0PefIsxbQs+1JAvzotu0GpTpzakYYoePZ+Om8IvrPhhBCCCGEEGIq6GVDCCGEEEIIMRX0siGEEEIIIYSYCif2bCy1UCNfz6OerFRyQxr8ALVd5TLq4ELKSnD1ZKjxnkSuViwmPWOSUgYG6cTTHGoCuxM3LyCO8VwGMerYIqq7tCbzg0N3m3la07vRw3MNt1G/PjxGreyZRcqEWEb9n5mZV8e8hfER6qh7PTyu4y7qEPePUZNpZnZnE7cZZwkcZ0CxiNrPMECd8LCMeStmZrc7eD6vfe+HUB8eoH72wcMdqPOUbcLX0MxsHGH/Yt/M2hK21+425RNk5EZ026hXvn77Nm5zDdfwzudxH2u07r2Z2Tr97N42+lPefRPr5TXUbt+5Rz6QMEPbSdrsOIfju0Tr6RdzeE2HI1ev3GiQVynnrskv/qq482qa4rV4cP8+1LfvYb158xbUi3V3PJ5aRK351j0cC2++/JdQf/QLLagrrIP+2bVnZOKT728yxvk7zvApRJwlMcL7So6MVp32IdQeaebT2B2jD7a2oG7WcG6u0D23M8Z7Spb2vFDCOS2kjKOQztUjf2cSuceZBJzNRLkQdBiDIe6jUERPRyHvzkWVEnZKzgU6Jt/fcRvbolZytf4e+WqccTAjhuy9yfOzQEZGQ8yZZFh7dE3IKmaTEPt4mPH4Ua/gXNPtYB/vsJ+HvE6FgnsPrhfIUxvgZ/oR9g3OBxnv43U1M2u38XmjWsPn4bU19F5ePH8B6hrfPzOOOwxpnNBtOjXsS5zlkTUW+UfsAzkp+s+GEEIIIYQQYiroZUMIIYQQQggxFfSyIYQQQgghhJgKJxbgry+h3rZRwIyCWsXVj3kp5zak9HvSkw5Ra8drUC/UXa1itYpeks4xasubpPnujvCY7j5wMwl6Y9S1FUj3tlGhbI88agLvHLSdbY5T3GaexIlNWqv8hSc+CnVni7SzA1c411xEDep4gMfZ6+G7ZTGPnz+9isdgZra8vAL1Tsddy30WVCp4HLtt7H83N9FzYGb29ltXofZJYxqPsS8Mu+hpCUjvPBzT2u9m1u7iz7p91GXeuf8O1NUytvGVi1ecbRr5QL7/3W9Bffb8eagvX7kM9cKCO06KpIFuNlD/6UeoMe2Psa8MB6hRHbZxjXozszjGvlEqY//ide0blOVRzPB98RrzA8o+ebSwb+UkJoKf0GiQcpkhmOW10T1e//6D/qbkHlOS4PhizXx3gNf6/g5q/XeoNjOLY8x8OLWMx3XtL9FTtby6BvXlj32ctujevnxe+5+bi5qCPu7ck06EN5u/2XGOQaGA55+lt45IMz8e4b1qroz39byPDZLzcQyPJu4YLVBG1GRMXssOzqsF0qpnaeY98oTGpJEvU15ISPNEvdFytlkq4XF6HuVpUQZGOCE/AXk0eHs//hK1N82b8QT7SiGHfoPGPGYT/XiTOBY7/UczBw7JIzSmzK2sjBtuI+6hPP4SGrBc9+n+amZWKpNPhvtOiL8fUfZa5LljPqX9FnzOgHO+AVWOM+Myttkd4Lkc38Bnhf0DfDatk5/n1Ibr252jrI5CkfPvsC0SyhqLMqY/zjaJU9cPdRL0nw0hhBBCCCHEVNDLhhBCCCGEEGIq6GVDCCGEEEIIMRVO7NmYr6P2KzdpQ1101lw2q9C61OMhrwGMerFWC/VmrEGdxO67UUjrMFdqqIF8uIeayffuojZ9r4vHYGY2oB+dLaP+7tc/+xzUp9Zwn//fK7jmvJnZSze3oY4S1LXmfNLztffwmHp4HvU6rRFuZhajHq9Uws8USBNf8fD3Uey2xZnTuPZz/dDV6s+C1jxmS9zcvA711h3MojAzq+SxzY77R1D3OrtQe7T+druLmsr20PWr5Cj/Y3EFdell8hltnHsW6tMZPoXbr78EdeBhXwlprfu9fcxTefrpx51tPnYJ1+w+TTkatU9+GOo3rt2DejxC7e04n5GzYejBSFLsT9vbD6EuFFED3ZzDtvsxqPceDt0smEfHT77gePpBng1H1JxSmbEOumE7Ox4Nx8PBdRb40zPnzkFdIb9Np0/XJcPHcHUTx1uZMlNylFHz1ovfhnphA31bc6ewT5uZeRH7Aim7iTXLNO/6P8Ua8hlS9angU5ZEmlCOVZX12WYj0qMXqujRiPuUzeHhfXx1Bds8OshoIPKYVSkPYEzzaHMVfQkn8WEtruB8Ne7hPgO6l+UzMjBKpF8fDfG4igX8vV/A+/oxtVUYutr1gO6hI/KIWoLzfZk8DbkM/8ooxHPd299zPjMLJuRn8ihvLEky7gn+BwyOIo1Pyn1JfGzPXMYTa0g5GoUctmmtjG06mOB9PDL3uWdM3XxM80rRxwMJKL8izfg7Pj/vRpRhw+N7+xDny4djvM/fvIv3aDOzpSV8TlpfPw11jTJwSuS3StmbYmZhSp6NjKydk6D/bAghhBBCCCGmgl42hBBCCCGEEFNBLxtCCCGEEEKIqXBiz8by/ALUw0PUvfmeu6negHIMJqS/81AfNiANJL8JDUm7aGbWmkPt8CRGbd2t+6gTP+xQXkXO1UgGpBtslPA7yzn0LZQOUct5qbHqbHNrHre500Y93niA5/bqdfQk+LQAcljF8zYzsybqa410hc0memjqpPkdTTgXxSydYI7EOcpbmRXvvYdr8F977ybUD7fec74TU25GvYnHfuXSOaifevwpqLf2UAt6dw+3Z2a2tIptfvYiZmDUF9CHsHOE20j3Xa/JPdJi7rVRq/n4E/j5X7iMHo1+z/U1JCSzTCekj/8B+kQuXXkO6pWNFtQ/+OF3nH1s72Bf4fXhR0Pc59ERjqNyDfdhZpaQTrg/cK/Bo+Mn/1uNk/tAOJ4MGqNJxhrnIWnmObfAc3bKPoYMaG6em0Mt8Gc+9wWo33ztGtR3bt91NhlHeOw3A/Sxlc6hPyx+9wbu49vfh/oTv4I6fjOzcgV19jHnaHBN349O4MNhz8uJb6J/RR7sod+Q+0p17GrmazTnjSg7ohagZntjDX2TxQqea4C2NzMzm6OMrVYFt1lfxb4zJmPMdfJymZm1Wnh/G5PfbkTGyjydR9hxdfijMd6nE+rjAeUz9Ho4P0U0rfKzhpnZUgvvsfMNbM8bXfRzLlAugudK5q1BXpwkdPOwZkH0ARk0cZLR5tSGOTJd8PjM+TiXcQ5HPu96QHI8Atk7QvNfrUBe1YxpPKGfhbTNKMbj9MmjlmYEVsTk0YiDlD+A26Bfe+yxDd19dB7iOLm7dQfqYgHHSaWC/TUrO6ZI95N8nv3CzzjfyUL/2RBCCCGEEEJMBb1sCCGEEEIIIaaCXjaEEEIIIYQQU0EvG0IIIYQQQoipcGJv29wimvHmahSA47shc+0OmlXCPobo+BQOkhgaXlIKCqzVXPNKaPizd26hsbo/RkNpqYRhP6WC2wTlKppm5gI0Pr1ycwfqaILbGDddg/jSHB6nRwFoYYSG+wEF1fQHFHAYuWYsjw30bK6igB0OcMlnJOZEZKpLM0xxs+AH3/kG1LmVK1BffPxp5zvlCfanx5+4BPWVy6egjkcUzOPTNbB9Zx+5PF7XIGhBHUbY3/rdQ6ibE/c6RtTG93ZxHJVqD3AbZEK8cPGcs00OGRq2MUjr2l+8hp8fYts99Yu/BPXTz7iBasOX0SD+3s07UFfIvNts4aITjkPOzDo0h4zHHxwANjPYvXiScDcO6SNDsmNYpmDEGzdvGDMc4hz3ocdxwYBiEfu1f4IUuiTF7yR0q3jh05+F+t5t7JO//Vu/7WwzogUC7u218TgrOFYu0aIa7373ZaiXMkL9PvTpj0M9oMCuPDk/C9QWhwM0YZuZjSc4B7LR/fwKLgoxLcZkOj08xLmkMnBDR+fpnpCn61iqkYF8gGO4xwm3GV0noHvRuIvttVTHcf/uDVwUo1bC+62ZWa2MzxfjMc7Fc2sYDOjFZJ4dUFihmZXo9tYd4XUsUsDZ9g4Z1xM8plqz5exjNMT5KQpx0ZUyhbjWq2i+PaQARDOz0Riva52Ci2fFmPqSR2MnSdxnA17EIKLrOKT5PE/m7YCM18Wc+5yZUnClx3MXmbtTWi0l47BtQOGME3o29enZaUJtked7g5mlPi3y49NiRXQcfkCrBXi0KFPGvwr4VBKa7yYUZNnp0z03dhdhsjF+h6+72T9wv5OB/rMhhBBCCCGEmAp62RBCCCGEEEJMBb1sCCGEEEIIIabCyfOIyJPhOcEeLsUSfqZiqA/N0buOTyK0kHRyxXLT2cf+NobGDPZR431hHnWYJH+0UtXVi165uIHHRV+KAjwv1pXnAlf3Wy/guS/MXYT64qUzUN++95dQX7uOmuhCztWkpilq66IIL69PAYasj2Rto5lZQiJdz3s076e7m+iX+PCzfwfqYtEN+JonyePaOvpkDtvYdzZvogZ6kqCG3PdcT0GQwzaLU7oudA1i0qymcVYQF4ZgHfRQk+9TX0pY7JkVTEa7qZWwLc6tn4a6RIFDvmHfevopV6fearWg/urwT6De3sJxsrFMIW6eqznPk2+r0+k4n3lUcLtnBfaxZjklLbAznEgPu/kAAx7/4A+/5uyj08H55oV9DAz94ud/DupiEfu123+c7mIR9dNaHYPFvvxrX4b65rvonTMz++Yfoe+qQ6GP1x5gyN+chxr50ggb6wf/FvuXmVluAfXs/koL6n4b2ypP+u2tzn1nm8dd/M5ohP30/N/+b5zvTIPleWzzaIRjsl7D62pmllLgY5DDNiyX8Z7AXWFAPptJRgJakcwQj195DOrtbfQ4jse4k8Uld+6OYvQ6JEbPEuQ1mQywfwZlVzMfkEa+f4jX9Zj8Os0GzpE98k3GiRuCW6TnopD8LBtncJ7l++tRx/Vs8H25Ne+21ywYUL/PsWkgyXicpGMf9rEvFArYpvMr6KMs0y3Xj12PY8B92MfrcnyEobjDHt5Dzp5H/6eZWTfE/nV0hH2jWMTnxpD9LBn+Q2eejd7/92yPLRielx9k+D1D7E8xpxNy+CB5mpP2prPNgwcYRGnpT/cMqP9sCCGEEEIIIaaCXjaEEEIIIYQQU0EvG0IIIYQQQoipcGLPxnCEejEvHNInXP1Yv4/auEmI7zaRj36K3gA19B2qN067h5tG+Jmzi6hZu7iOGsrBCH+/cflZZ5uFFLWJR8e0VjbnAxygOeD06pqzzXYftXEXPoSZD425CtW4Vv7RHp7n0bHrC8mTlt9PUcMb8vrSJMyOQ/caUjSHo0GfFZUarquep8Not1GnbmZWnG9BPaB16kmCauU51EQXEzr5kavDTKlLjkJcN7xUJt+Mh9rOxHf7dG0BvQyFFL0kQRlzNdICrSvuuVkUXkx9I8D95mm993IN62iM/e/gAWpvzcwWqqgl/rW//YtQv/z6Hah7pAcfjfecbY6HOM+06i3nM48O6g8ZfqYj0gsfH+G19ALsY9t72I9fevmHUL/y1uvOPjqHbah5Pfwnn34K6uUl9AQFgdsHO13sQ+027uPcKdRWr59ahvq//Ef/hbPNzQfvQf0Xr78B9biP/fjGffRwVFbx9wdXrzr7GPwe1hc//TzURz3y+FGuxNhrO9uchOjDysoTmAU1ykt5/CL6/MoV13/I43x7cwvqKMJzq9bwOrZ7OEkGHs4LZmYe+Q66x9jGe7votwsdq4Pr/+z10LuQpPilwQDvp70OHmejgnO5mdmENO+ph/e7gDwIDfIllSvYlrkcmQLNrF6n3CX//TMfbt9DjbyXc9u3QHkL3Yw8lVkQc7YXDYO5InqszMwa5IkdUhsa3Q/zPZzvS+QRWl7G/mlmNipjm08izjbBYwgqeJwV8uaYmbWq+Ay3ushzAD1L0HPRIMP/ur2H98yw34Y6T308R9lrQYJtFYY4zszMcgGea0I5dM7zxpCeuR/ecbY5PsLj7vVcv/BJ0H82hBBCCCGEEFNBLxtCCCGEEEKIqaCXDSGEEEIIIcRUOLFnI6aMAV4vPkvLXy6hNq5WRz3Zwz3U592+j5rtHAnzCzsPnX2MdvA7l5ZR//mlL6A34r0HqJmub7hrVi8urEK9S1q7Vov07wnus+C7Ws7dPczJyJXaUO+1UUv7YAs1q/k8tl2r4WoCh0Na05/WVPfIgJGQh8P33LXJPdKx8trPs2LtDOY68HGNRm7+wk4Hu3ehhVr1MEJ9LGfHDEk3HGasL53LoS8mCrBmPejyQhvq9JC9T2YT8s54Ca+Nj+OKu1uSut6bOKZrnccvpQHuo9dHLadHGtQir7FuZh0aJ+UK+mw+96lnoH73vbtQX30bNfpmZr0OarML+ZLzmdnBul32bLjfOO6gXv27L34P6rsPMddhv9OG+oiug191Nd2lMc5Huwe8z+9Cfe4crvXPuRtmZg9oLg4nqBceDvA4e12s8xl3lsc/dgHq126+CfWki5PL/TaO6UoBj/NU0+0Lt1/+EdRBkbKc1rFPHkfoTXFnbjNLsc3H459Os/xXpUberGoFrzvnJpmZNVt4vhw/cXSAnqK33sF8lIjmnmIBc0zMzOar6CF7+ADvdQf72B9HEV63zrGrPXfyAOh2125jZg/ZlGwyph+YWaWC7Te/gLldnCE1juiZh7w6w5E7d6c0R0Tkc+C+E9McUqZrmkUu784BM4EyW5rki2mxH8PMHmxhTtCQxvCYc4e28Z5wfgE9GsunMQPNzOzaQ3wuTMlrWenjdWpWsf+9uen64GqreN+pFXFs3b7+NtQxjYHWJbzXmZnV1jF/pn/3HagDyv9oUG7aoNfGuuv6VAt5HJ+dEfb5cgufdxdoQuiZmx3D9zV+9jop+s+GEEIIIYQQYiroZUMIIYQQQggxFfSyIYQQQgghhJgKJ/ZstFqoBYtyqLXr9dy1n9MQ9YjHXcyGuHuP1+9FjVq5hO9CW7ddXf5KCfWLGxtnoW6to9Y/3yXxZ8nVuZ569uP4kW3UoJYj1DPHhufe77ttsVZBrdwkxuPwqti+p6qYtVBvoY+ke+Dq23d3UH8benhuowlpjX3UoFaLrgZ6MiTvSIYueBakHmoPQ/I1DLqu7rdI3oZuB/06kxG2x6CD28iTVrFedbXtS3OoiW7Mo+Z2qYXHEOdQJzwsuv6Kw7N47ccx+nmMsjxi0tImnA9iZrFP/Y08G6151JwmMe2D2rvZdNdUL3jYn9qk409D7EvPPY59ulV32/drX/sTqPd29p3PzIq33kFtby6HY4F9DWZmR5RP0e7hHHhvC+eW5jJm+MxTOy8suh6zvfewf7xzFb0Q3/jmN3AfDdxmkJEXMJ7gtZyMcU77t3+MdZ7+bMW5G2ZmlUVsr2ef+xDUr37vXagHhn32+gF5gmJX3z4XoY785g9egbq9hHPcIY2L/MSdAyOeawaUY/PfOl+ZCqdWsU1Z7z/XwjFsZhbQvJlfxM+sLmF/+9M//zbUSULzRN2dW7a3sC+szGEbtpp4b2vvooZ+f9e9l7Xm0OtWJa9Sk35fr+I8XG/iPGtmVq1h/4sow+fWTfQLBJR5MSAfyCRjvE/GeE0C8sJ51KfLJZzzYs+9v4YUTBKOH03Ohh/jcazW8LruHLkegpD6S46yS3zqn1GIXpyzzz8J9ZG5XtUJZZQFHmVbNbA/tuk+383w3iTkSRuP6P5H29ykZ9f+Hj6LmZmdbbWgXr+Cvo722/Qc+QD749EO1p2+u4+YckmOh9j+5Tm8f9RPYx0N3Gfs0RCfk/wMT/JJ0H82hBBCCCGEEFNBLxtCCCGEEEKIqaCXDSGEEEIIIcRU0MuGEEIIIYQQYiqc2CDebaMZJTdhM23Gewv5SHIB/mBAZsm5Ohr+WhS+MjxyzSvL62hw23jm81BfvY8mrus3sX5hDY1lZmbtNn5m5eKzUPuGBsHJGA3jLU4gMrPOLrZfeYJmq7V5PI52jMax/DNo7BtSCKCZ2ff/8KtQ39/E4wocczeah4YZgX0hvY/6YUboyywgE3QuoYChjKy30008vw9daEFdo9DJgPpwnwLWRgPsr2Zm5Sq2x5VLeB1Pnz0FtZ/HBQx6ZCA2Mzu9tobbvI3Gu8Y8nuw8mSVzOTf0ifKoLKWxWaqiyS4iQxytJWD5jGCfEQVaLSyigbBHxtp+G42hG0uu+fnXf+VvQf2Vr3/T+cysePGHL0I9pMDBask1LH/5y78GdZTiuH7lzWtQN+s0zhM0Da4vrzj7CHfQ4Hjcx3Ye3EDj9RwF3VWb7nHXyEhYquKc1mxhB2pSeGWj4Ya/lWvYx77wc5+A+ngfx9fVq7egjkMcz/farlE2T8GcuW3sx90jrKM6BWSWMfjTzOzBJs61HbrusyKl+0qR5nM2I5uZhX081mKAbZjSKhgxhfj5Pu4j86+TCc6BZ8/ioiyLNK5PUWBtseiaohvUJwM67t1dXFjhhU/goi6r67jIhplZlGJ/6Rzg/fFoH83JB21su1yAk+DSomtCT2iiTShMtUmm6iMKNEx914A/GeJx82Ids2K+gebuxRrW7UNcwMHMbJ4W4ClSf+PFF5YvXoH6whoGkL51D+cEM7NWEe93ESU8Lq+2oPbpvtTPub3ar+M2j/bwXnV2Ge/rgwLu8yh254jDI+xv/toZqE898UmoH9zHe8NoiPN6PnD7SkqpywGNzXEbnyX2DPtfxItfmJlP8wp16ROj/2wIIYQQQgghpoJeNoQQQgghhBBTQS8bQgghhBBCiKlwYs8Gy8NiCntLzdWP+YZ6vJgCXI5I/t/poN4spRCdtQxt8ce++EWoT11B3dvv/c6/gHqVwvOCiRvo8uDWe/idC09AXVp4DOpqirq3waEbblNOUIs9If3dfhfr1hLqXhdWz0E97KFG2szMpx/FBdR6eqQHDUnb6EWuGM9L8WdRdOIu89fK5z/1EagvPIE+mocPUMNrZraxjv6Jy5cuQr26hCFZQYrt06VQunHo6hm5TWtV7KO1GvorggJqxPOJGww17KO28/mn0Odx7vI5qEPSZaYZf0OIEhyLKQ3oII/XNRyR9pi0tX6GztUr0RxAnxmT3ycXoJ43nrSdbS6RvvYzn/2Y85lZcesO6oWPd1Hjfen8Jec75TL2h4cPcW64e/se1LUq9g/uc17Hna+GbdJwU5987OIFqC8uoda8PufOJbu75Kebx2u5dhrPq9vB4yy4tjUrUUBcg47jF34J5/JD8ujt3Me22x+7O6kc43eWyUuSo+DJjTrOEdUVDJo0M3tw5w7Uk4EbIDoL7m3eh5rnmm7X1Ymznn1iOAZjCqasUOjaZEia+iU3OLDoY5+8eGEDf0/H4OexjxcyPBvlMnlFqE+nQ7wG4w4+j4RNd5wsrGF/8yP8zNnTqMMvlrAvdfptqAsF916Yo0C5iOY8DtCM6RknyPB9pRF64WpV12c6C86u4n7/7i//HNR3b51zvtMd4XUZj/B8ozH2r3Pr6GNIyQOTLrrj85ieY/oD3OepRbzPR+R96mWEMKcUtlhLsd8HFKi5QuGr/V28h5uZ9R7gHBnS/FVdwf63/uRnoU5CnJN3H+JzqpnZoEdzEx1no4r9L2c4BtKMx7twgNvIetY/CfrPhhBCCCGEEGIq6GVDCCGEEEIIMRX0siGEEEIIIYSYCicW4JPU1WLSInoZ6+6zrDsd0ndIcju/gOuwr1ZQz/f8Ry87+3j8BfRoHO3SGt4R6twunEJdXMIHYWary7guOGcODCiHYxLh78Oh26yxofb8vQeov33z6stQv/BJ3MfCKuaJdLquLySPzWeL51D/mdA1iifkxxi7/oHjvTbU427F+cws+MgzH4L6yQ+jZ2P4FPoxzMyqTdRr85VOPdQe+uQhmK+iPjTNeDXnHyUJ7oXXETcaN+Oxqy2++BjqVssFvI7DPvbp1Kf+5rn9L6UBnKRYx9QWvF78ZIjHGSeuttjPUXtS63QPULN69/Ym1J/+zIedbQ5C1KBW2BcyQ/rH2O6DEbZJseKGvRx38Tt3N+9A3aI+GpN+2BuhXntr+6azj62H+/gdH7/z93/z70Kd9A6h/rPvfcvZ5t030AO10ETd/fYNvA4bpLU+Dt019y2Pc9b8AmaGPH3lKagnv479+F/8H/8S6mHX1Vo/bOP8b5Q5M56QXnsf84/Wm65/pUD+gcXllvOZWTAY4nVNSDs9yfDczS+hzj4h79ZohPPR6dOYa/D2Vcxoyefc8be2ivfLJfJ1BHSPpSgUKxTd+apCY4lzNmyIc/Owg/6Kwz33/pj62F/KNJfwPht1nAM7Axw3aexmTpUpu8mj/sc+yUYZ76dxRvs2KriNfOB8ZCY0Amy/Tz2PY/7jT6JXx8ysO8A+G9JNNIywjaMBzqlDmv/OT9x9DMbY73t93Eae/IhH1FdK591cquEY95u2MH/nwTZm79wg790Tc+gTMTO7t4f9x8jDFpfQL1U7+zzUn714DurDTdez8e6PXoF6dxvHb9VDn6GN0ec1it3O5dEzTe6n7ID6z4YQQgghhBBiKuhlQwghhBBCCDEV9LIhhBBCCCGEmAon9mwkpAcd0hrBBcqvMDPL0RregY96xcdWUdtZKuO7z7mzqB999jO4DruZ2dqVZ6B+7aXfgfrMadzH6pNPQ11YcrX+uQquxz2gtaKHHdSR7zxE7fnRDvoxzMxiWi+/XEd96OIittXmw1ehXllDrWJEa0mbmaWk6fX6qM+LU1pTmXT85Yz1zgur+LNO8dFo5sucX0HrYFcrGV2Z1jQnG4J57Nlg3wKtx52Err+HvQ/sXYrIKULLxVvque/7tRbqrKMYtxGT1tMSWoPeXO02r1NvMda83n5q1FgRZbIk7j6KdFz5GM+tOsLfpzvYH/duuTr/U1fQY7Xvu/1+VkzIXzMgvevN266f4ve/8rtQf+/b34bao2yXHcoL2LuLc0s+I78ipGtRWMX56/vf+S7U4w56PN6+cd3ZZn8Htf3tPdxHawHnr71t/Hzn2M18mGuhnn0S436/9a0fQV1uoE9tjtbL3w/Rb2FmNqB1+x+QryOl+atCxxlkaP1bC9ieQfBosobYU8aZBcWcqz0fT/CeUCzhmPRpTospd6p71IZ60EO9u5nZ+TN4Dy1TG9cqqEVvzmE/CCPX+xDHlD8R4HEvLuI2d3fxuLdYH29mr1x9A+rHyBu3u4fn9nALsxIiw7ZsNfAYzMzyNN8XizhOIronjUfYP5OM22tlvgV1p/do5sDeIT5P3L99FepTG5gNZma2sYa+rBz1hYT8hZ19nJvabdznwjzOCWZmffICD4aUu9HDMd7t4Xi+QjlEZmb9PnkZyLO4VMbnj/wYj+Ejn3jB2ebhAD9zZxv9fBMf+0o8JE/aHHqj1p9x23vpmV+AOjrCe+rhO38B9e2rfwn1/nvuvcAvYFv4uYyb0AnQfzaEEEIIIYQQU0EvG0IIIYQQQoipoJcNIYQQQgghxFQ4sfg0TzrVoy56EOKRKzYsV1CbGfioA1+mXI3NrTbUF5//JahPPY31j0FPRthFfVmzjvq8pcvPQd3PoT7ezOytV1HHNh7iNjsdPM79B7jGchC7eRWlErbfxnn0YDxz+TGoowA9CvmghXXB1bnmSP85uItr5bPvJqJXzV7grp9cWcDjWFl3NZOzoN7E65SSfnmQkRGS0lrZ4/H7azkntAb6mHSYUeRqFUPKzeB11AcDHCeDPvp9osTdZn0e+2y92YK6Vcc1v0sF1GrHidsW5qGW3Tes6+QhOtjFbYyGqBNOEhx3Zmae4XEkMbZ/o44617NnUM87HLg6/5RyAZp1N99jVjTpuoQ0fjoZeva3X3sN6p3bt6H2aQqukHem4GObphP32vqUt3CK/F3zdbxWR7SW/YVzV5xt3o1RK90+RH9EXGxBvUP5IIOB6+lpH6J+2KP5ZkRrwLcHuI68X8D7SRK4HoW0gNsckIY+pjFcpW3Wmm6/Zr9AkrrnNgtWFzFbopjH46oU3fYoV7BvRHRvypORrVHC8XZxA8doi+7pZmbrlDtSK+I1aFRxbhn5uI1C4h535xiPo1TF7+QrOE6293B+2jzEedfM7N2b2P+2d7HPdo5xG2GI9ROPr0FdK7kex5hyJThLISWPX6mA24gzslI8evaK4sj5zCxolXHu7R5sQ72VcS9bXMX+16RzqdZb+IUmejoCD++vdbf7WbOG30lpzozonvzO29egXlpCL4SZWaWCfp4BPSs8ew7n2M9/FDMxhpQfYmY2oMt26TRe650DnJcfbqPvaJtyqe7F7j5G5Ikpt9Dz2HoKn6Gfu/IpqDduo6/JzOyNF/8Q6r3t285nToL+syGEEEIIIYSYCnrZEEIIIYQQQkwFvWwIIYQQQgghpoJeNoQQQgghhBBT4cQG8TEFjFSK+FWv5JqL8z46YlIyNpVr+J1f/U9/FeoXfvlLUDcW0axmZrZz6x2oA9pnu4vBKXt33oX6Ydc1ZH3rK1+BulZGE9dojMax1RU0jjYyTKy376O5Z0LHOb9+DurLT38ENxCjufaw7QYHDsikfzTEfXgpXrPREA1dvdQ1HKU9vO6Pt5yPzISvfPWPoI7zGFR2dOQGwvWOMSCI1idwDOM7O7iNmMyT80sYKmZmNreIhvkiGeD6h22or9/A/poV0HT6/Fmogzz2v0Yd93n+PJrZTp1GI6mZ2fkLZBqm4K06mR2TZgM3QGbeMMOkGOTwbxcB7WPlHBnbG9inwwzjLXuA5+cbzmdmRY0M4jka55MD1+C+fx3H/ekabsMjM2OX5tkRzRNeGc22ZmZFD6/N3g4aC1/5i9ehXqmjifCAgtvMzI4pxKpH3s/hPpvh8VrnMszb5TyOpxGZ3ffaeByxj+dVyaE7lAM0zcx85z5EB56i4bTfx/PsdLA2M5tbaNEmH02waUrnWyrjAiv5nNse+SL+bNRFA3MY4phr1nF8Pfccjlm+hmZm+Txe61yOF6yga+BjHy8W3MeQWo0WSqC5JE3wO3lqm7ev4X3ezKxPoWoW43jlBUEKtAiJ7+N8lXpuP0h8bM8OjaPuAM+dx8lk4s6r0Ri/M6GFT2bFGs1/3gTb63DHDcR8/Q0MOn31Kl6XlQ0Mbv7s5z8H9cYS7nN05Br/A5oXzOf+iH3lzDouAlHOMPoXC9ifGgUca1bHfYQxbrM7dBfwGVKQ7js37kB9NMYQyecvoHG9t4zncXsLDfpmZu/cRfP767ew/bu0sMdiA8/riRV8TjAz++jnMCjw1Ze+4XzmJOg/G0IIIYQQQoipoJcNIYQQQgghxFTQy4YQQgghhBBiKpzYs5GkFCaVoDbRywg8i0gf63kUaFMkfehH0KdQJK3626+96uzj6CEGP41J39g9Qv3y5s23oe6lbkpMPsZt1HIUUlRCrfbSHOoKt3ZcLV1E4W+DLoUQ3cZgQLO38Dh7GAZXyrna2aiInoKDCNu3THrvCiXklHOoSTUz6w5Qmx0ljyZQ6Bt//iLUrVMYRJbGrvfh1Rf/HOqzpzDgZnEBvQ8P7uN1i6iPV+Zbzj4mPvb7HfLmfOnjGJrz3DNPQj2g/mpm5udJm3nvLtTXb2Cff/MqjotWs+Zs8zf/k9+A+tNPXoa6kOLfHU6toZZ2Qp4Nz8/QK5PnJzRsPz+HdbGF/bGcocFPAgohcz4xOxLS8aakwS0EGZp50sSfaWA4ZUS+hC5pvIMGXku/4Ho2hjvoSxu3UdfcPcC5Yz/B42yPXR30ueefgXp7D0P92ke4z1oN58RRRkBjmKdwtzHOJcMQx5JPfaxE5556ri46Jo9GQHptn8K2EvIT7O61nW1yzlqu8Gg8G5MQ26vbx+vm10lXbmbDNl77MMI2q5QpRI307u0D6lsZno3jHvZZ1q+ndJ3zOWy/vO/6PQcUCEpTiU2G+Hv2kG5vbznbHKfYf8YBeTTIaxKQ/4eDKqOMgM0iBawej7Bttg8wuDI1OvfU7Vueh/stF0/82PbXyhsUdpwe4H2pueCG473yFnoIrpFP4dNfRF/uv/q//iXUv/Klz0A9V3L7X4n6cC6P42A4wnGytIDPSUnR9dgefYAvxqO5PqS/23t5d56+eRd9tv/kf/knUO/v4rPqJz6J5/7lv/cPoF5eddu7GmF/W4+wP73VxvkuIU/gLj1rmJldovDdC1eecD5zEvSfDSGEEEIIIcRU0MuGEEIIIYQQYiroZUMIIYQQQggxFX4C8R9pvSLUK7JOzswsJrHrxFAfttJEbecff/VrUM+voG9hmXTkZmaTAWpK83n0HdSq6FvIkT60mndV4KvLqOUfdlFnWQ5wHwd7mOcQTty8gHoJ/RETyle48erLUG9duw71mLR4lnd1rrwuffUUaRGreM38IvoFShl+jDnD4378yfPOZ2bB3/vP/yHUxeVLUA+6rk/mxpuYL7C2iv3HJ49AuYR9ZZJgm19+CvdpZja3hvrPwSL26S//8s9DzT6ZfoZng5fxj1Ice6MIv7NLWs+7tx8626xU8Ny276MG/85bN6D2R7iPW9u4hvrH/9ZHnX2cPbcONWdx+CXKXsiT7yvLD0R65YLnesNmRZv07+MBjqfqxB2TS6vYJgd3sR1v3kGN7F6I7T4/jx4Pv+R6zPoJzk9xiB0oGqD+eDQm7bnn6qD3tnFO6/dQ95yG+J1KEef/ydDt114R581ohMdVqOJ8lcbU7ykXJ+HgHDOb0H2pSBkQhRLdHyroiSlXXL9TSOfK88as2Kc8lHW6T7GHw8wsSqg/LWB/6nbwO1GE9Zh8CYnb5Hbt5m2ofRqj7GU6Q/OEX3O9gqM+9tGYjiOa4NxcpH2wp8jM7PoDHGvnl9agnq9Tjg5l+vT76PE4itx95CgzhHNzjqhOyCvnZTyS5T2cF/uDR5OzsUdesGt5zIUIdvGeYmZ2bwu9M5/70heg/h/+p/8R6n/6z/43qL/+B1+F+kMb2OfNzPIFeu6hrJg4xr4038QxsDTv5rdxNkeBvDi+h7/v0b1ukpF587//1u9A/fa1N6Hmuer3v/qvoT515Wmon76Evkszs3IRvSKNFI9rnaa3iI6zH7ueoXSC/e3sxhnnMydB/9kQQgghhBBCTAW9bAghhBBCCCGmgl42hBBCCCGEEFPh5DkbJCQvUPZEKZehpaZ10tMANbnJBDWQ+/uou+/tYV0OMfPBzCyhdarn51DT11rHtYgjWr/7wUNX658aa3SxmSYR6uACD30f1ZLrX+EYkoB/QLrpeIJ6UJ/avzNAnbaZ2aSIOtb6Op5rv9yGupugDnbUd989FxoXoF5cdjWTs6BIGQfXr12FunOccR0594F0v70eZgF4Hq3rX8TrGg5Qs29mdryH+9i5hzkbf/THfwT1URe3cdxzdb/1BmpOm3OoMa02UON8/z56NJYXN5xtlhroLfnu1/G4Dm+8AXVMY/Pm9g7us++2xaXH0dPSbOA4aFIeTbmC+tJm1fVP5Wmt+0rF1XfPjCEdH0mnI488KWbWJxvHloc/2KJ5oDeheYFyDoK8q8sfUFZESnPFkOarNCUfTN497gfkQ4vIP+EZ7mPviOYjL0P7S9rpfBn9Jw3SRbPnj8dzkKGLLlMSi09a/jydq0f7TBP3PsZr6rNee1ZsPsRxniffHvsYzMxOn16FmvX+nR57NqiNyQc4iNxsiXdu3oKafZEPN1G3vziPvrZms+Vs88aNm1DzPflX/w7mFxVTnDPnWpi9YGZW7uCcdtBuQ53Q2OP27fRwPuuP3SyZAV0Dv4Dz1YiyZLwA+xLnvpiZHdE9YrHu+rZmwca5x6COjTJcQtenVaiiSWDtNN6bUnruOb2OWVjf/De/C3V3G/uOmVmljG1cLHP74FxUzOEcwb6tH28TrzXPkaUC7iMlL9je0L0/vvUOZrz9/M9jxsizzz0L9T//bfR4vPQdvGdfWG05+yhUsM/ub+Nz0es30Aucr+J5rDTcbcZDynkp/HT/o9B/NoQQQgghhBBTQS8bQgghhBBCiKmglw0hhBBCCCHEVDix+NT3UJNWKpJmzdw18quke6vWF6EekMZvoY66uBxtc3KMunEzs8TH7wzyqHlcWcFciIR0+1eeQY2gmdmLf/6nuN8Uda150iMPSffaoHWezcwKtG5zQGuR9yjX4PYWaqDbbWyLsefqRZcu47vjRouyPVJsq6N9PO7CyNXMV2ld6+HAzRCZBd0D1B7+2b/5OtSb2/ed7/gh6mffeIM8P3QdI9K2G12jb3ztz5x9FCjX5bkPPw/1pIDa4c4Y2/zWPcxdMDM7OHgHtzHC43i4fQfq23fw8x/98Eecbf53//i/h/qHP3gJ6ugY10jvjFHbPSTN9K2X0ZtiZvbdV1CbXc2hRprXQw8od6Ge4dk4dfYc1L/2m/8Z1O6ZTo8cebNC8hD0hu7694cd7HOHtGZ5lMd5IY2wjUa0Lr83djXzIeWw+Jy308T5KAjoOuTc2wAt/+/6JXgbVPu+69ngeIqEfuA7x4XnFSfk4cjah3MclGPAXhIPf58k7vzG04IzT8yIiK7BwTFq+RvkgTJzPRl8rdnz2B/i5/mapYnrC6mXcRu7h7iN197EfItqGfMZxiOcJ/79kf2HFMi79c4N3OZKBZ8tsuaS1VX8zMFdvKd4Oewbu3t4nKdO4b0w5kAkMxuT52VA3raIvhNTe9Ybrn9gQuEmffZ1zYjIKPuEjqtQdL2qFHPm9MedXWzj/UN87rm/jfelNHL7Cj+LhiHNE/T5Is251aLbVwLyJJdLOLZK5MtNAryu9/bcZ1VL8TO//hu/AfULL7wA9eYmPtP8/lf/AOpXXz/r7CIe4f3haAfniMnBA6hzMT6fDCLMfzMzu3WE9/pK0fX4nQT9Z0MIIYQQQggxFfSyIYQQQgghhJgKetkQQgghhBBCTIUTezYKtKb5gDTdQQkzNMzMkgA12QPS0Ad5VNMVae3ifB63WajgOv1mZs0GfmabtHKDDfRkLJ/GtaIf7OJ68mZmT37s01D39nB981vX34K632tDnQtcXWuTdNMeaVK3HuA+7t2lnI0inmdjxdVHLs3TPsgH4h3iNuaO8PJvLGOeg5nZqRa23823Uef6RZQdTo21lTWoL51DL05qro415+PPAtJr8xr8KWtQuU/nXU30+jquG/6FX/xFqOsVypoo4Trhb1993dnm9ZvvQb26cQ7qEQnqA/JGXb1+zdnm29dxfe3KucehfvgQj2uuhfUy5RFUau5a74fbqKM+eIBr5e/t49gcxZSDkqGB3mpjH33hS+5nZkWvi3rWTgd9U/2eO+77fRqDdPiNFo7ZYvn9c0Q8FtGbWTmH1yZPa/uznyJPmuUsz0bM2R0pK59T+j3+Nsg4TidLiHI32Avh5OTQ72NHje1qrXN0brzNEmmxWc9tZpaSj6NYfDRZL3ML6Dlo0L2vlHHshx30DJRprggneG4TyjbJ5fE6FjL02pMYdfS7h7jPUYTbmK+3oD51Ac/LzCwM8Vp3um2o79xHrX9hifJVUtdXU6tQxsoyznGNMo7FXhv9Vnfu3oH64uUzzj4mpMufxJQ9Qbcp9nScmXf9nuUSHvd46Pq2ZsF+G/0TYYTnlssY8yn1p1ffwHysp5/9CP3+TdwH/T18knPvO5OQsou28JluNMbjZP8sxamYGSdzmOUL2L94Do1T9uC694L5xRWoFxfQA9Qlf9/qGmbkHB5hn/+TP/lDZx8jyg47OMB7Vp88ajm63wSpe3+dW8GsuuWVVeczJ0H/2RBCCCGEEEJMBb1sCCGEEEIIIaaCXjaEEEIIIYQQU0EvG0IIIYQQQoipcGKD+MoSvpeEB2gWGsauQbdPuXOpT+YzMuo0GmiYKeTRlDPsUyibmZXZFDfB+uUXX4T6whU0qd6/j4ZnMzeQqkKhLwEZ38tlNOplGUWHQ/xZFKHJq0ZGnRc+fBnqEgUFRoFrgItDDMwZbqIxyu+iGXK5goEuH778pLPN5Raaml7Zuu18ZhYc7h1C/clPYADOC5//vPOdYpHMomQI58CvhExeAQVesZnSzGw4wTY/uI/tc0iBVYf7eB63yAxuZvZwF/tkbXkdP1DE6+gV0PQ5idxwuW98+3tQn734NNSn59HoXvJxHFUovHA8QmOjmdmtDi6cUKM+G5Npc/sIzWuLi+ecbQ5CvCZ/9u0fQv1f/6N/6HxnWuzTnMf9YTRyjZsTChHNl8hoSOZPnid4EQMO7Pt3H4IyJZNfFGO7+7TYR7niGp4dIzoZq9lA7nyfnfBm5jm2S2QwwLHEBvIcByBmhPrxcfNxuEZ32obrObdSCU2pj8og3qX2SRKcW9ZXlp3vFMgQPqBQyGqFFhXJYZt7ATZIvuBed48M4IMhbqNQxvmqtoDBdaHv3suiHP6s1KIQtRyOoy6FxV264AaeRds430R9HGvHPZybLz12Cer7mzegDiP3fuDRI1WvQ9eM/r5bowVE2MRuZtbvUzAj3bdnRUwht16Ax9qj/mlmNuxhm2/v4Rz6v/7Tfwb13Zu4yEiP5tibD9AkbeYu7MLzRkjPpl5Mixtl/M2d5yqP+nTqYf90ZiJnnjErV3G/B3Q/KdIiLJ1jfN4dj3Gfd+64QcYe9Um6fVpKYYR8lIW82/+qRRyvg/5PF+ys/2wIIYQQQgghpoJeNoQQQgghhBBTQS8bQgghhBBCiKlwYs/GmdOo5Wp6qMO8uenq9Xb2UBE2iVHrWqvh7vsDDLKLE9T7ZWnrDkkD2O2hrm0U4jaDFOt6DYN9zMx2tlG7eZ+CuRLSRK8sodfEIy2tmdlR+wjqYhXbotVEHWaBtNpj9guQZtXMrD+mAJwefqaa4O8fO43hLOureB5mZpv30eNysOde51lQJV35QQevyatvvOJ8Z5lCm1aWMTwqDPE6HR21cQMUipjLuK4b59FPcXoOr+OD61tQ93uo28wKyKkstKAOSqirHgzxuNbWMFxq+6Gr5dw/wH6/to6GKo80pr0xnWsO2z9MXN1mkbxLRdLLTw5Ib+tj/1yh8EIzswlpzDOksDMjDMmTQeGKuYwxyfL+YplCqUjs69GMzIF8Scb5xzQfsWY5IE9HUMDaz7vzaoHOhb0OvA/XC+HCXYY9U61WC2oen2Pyv8Seu88P8mhwcGAUUT+P3THOymY+91lRqaLeOibf3zh0jz2X50BHvI9z/+K/P9IQtVz+/b06ZmZjmic9ClqsNPEYul3X/1WmcbJHnr1cDufZuTIed6XlhuPVSujRWFnCkOD9FO/RlQqe/PLy+4ewmZnxbZptRY1mC+p6A8+zc9x2trm/jyF1qV9zPjML5hc49Bev65AC5czMxlU8Vp9C5dp0z11YQt9Rcx4D5aKMCTBJcRxEId5jYxrzYYgXKQndbfIYH9N9KOH5jvyefsazapv6y/df/D7UX/ziF6F+6+136Jhwe5OMtmCfaULtzf6VmO/zE3ebm3c3cR/Fn84zpP9sCCGEEEIIIaaCXjaEEEIIIYQQU0EvG0IIIYQQQoipcGLPRmOOMi9Iuz+3nLH+O2lM93dQSzciDW6ugDpL+rUloauVDWnN5OMh6i6rlF8xGqDefThCPaSZ2YT2E4esT8Zz5bW0G6TD/PHPUB86HOJ39g/wuGs11L8768dHrraukKP14Ev0e9Jqn3vsHB7TwN3md77zNtRvXN91PjMLiqQVHo/aUL/44p8630lDvNaNCrZPGJK/hzIOcvQufvbcaWcfT33yCagvnkEPR3sT/RPbR9jfCmV3zf6LC+jj2NtD79LTV56C+smnr0D9f/+r/9PZZs5QJx2SD2kywTrlNeRL2FZBRtbAufMXoN7dfBc/QN6BMvmWHn8cs2XMzEYDPPfTa26WwKxYWEDNtm84J8axO37CiDSy5DMYjbDPeQGt706a2yQj32JCOtwgyZiL/8PfOz6QjHmVjvuDMjI4ViPJ0BNH1KcSaq+AtP3srwi5Ttx8Bp/O7YM8HNwWfkbQBuu3s67BLCiVcQz7HmW0TNx8nSL1hXIRv+MZtmGBPB5G/bHRZN2+2aiDfrBJju7rRWyvIc01QeCu7U+ye5sM8bps0X17fgNzgsIt9z5VprFXquO5LjVxbtk/uIf7aJIPhA0tZtajjKMra3g/SOjZYTBAzfyg7/pu5snnEbrdfibEhteRx0Gu6F7HYhGfATlbbW4OfZTGcwTNIzy+zcwiyrpKYvJ2xe9/3Fl2s4gaudfH+9B4jNeZ/XxxRgYLf+drX/861Fffxmetl1/5EdQe9bc4Y06O2FtHXpKU5vWEMpiyuhZnO5XSLF/bB6P/bAghhBBCCCGmgl42hBBCCCGEEFNBLxtCCCGEEEKIqXBiz0auhB8tNVCfN19z31tyQ9So5cuoF+sc0e5j3Ea5hBrKOGON73jchrpQwW3mc7yuOGoIx2mGBjrktf1JR81LLJMGNcby3x0H6TsLqFdvH6FnYzhBXVyT1g3P+W57+3SuA1Lg7ezjeuZHlEnS7aP21szsm9+6htt4NDEbNiCPi9H5/+Ivf9n5TjLBdb8D0mEmpOVMSQ8aUHuWyINkZrbdRs19t30d6sMh7tMroZHm3dduOds8eAnzKC6cR0/Gxx67BPWEcjfKBddPkdIa/JzV4Qc4bhKSgw5Znxu76s6zp9CzMephBs4TDfQh/fCVV6F+eJc8HmY27OM1TAdHzmdmRaOBYzCJqZFSd0yOaRx3yIPCOQgB1U6mQ0bEQ57GQpSwLpd00OzR8Nzj9lI2Ybx/jgavO89jy8wspb9tJTT3ToY473LORsJ+Cg4xME7EyNBn0ycqNB4LOVcT7pPvg3Xns4KzlyoVyt3IyP8IqMMEAWeyYBtHlN2R0j67Xbd9hpQfwPss0bPDhObhcOjOJYNjfHZgP2J9voVfoDkvHOC8bGYWFPDaF8hjkObxODkDo0h9o0UZEGZmaQfzQDwf22LUxflsOKC2qrj3GPYdPaqwIc/jzBbykQYZvi6aI/N5eg7iZyk61yJ7NLgtzKxAw9EzHNPsv4jZc5XRnuwNWVhErxL7PVOay9gnYmaWUNBQv4/PNNs7mGl27tx5qLt9voe7fZwb9AM9HNQWWZ4YzkPyM+bdk6D/bAghhBBCCCGmgl42hBBCCCGEEFNBLxtCCCGEEEKIqXBi8WmvR1q7oAZlreoaFfJl1ItVKfih2US9WK8zpBo1bL1BxnrwI/xZvYBr4ZdIIxjRWse5nPu+VaAf5Yu8djtpZ2vYjH5Gq0akcS+U8UONFmo1Dw/RX9ElrV1jHs/TzGxAetsbd1Azf+3NTahX5lGDvnLK1Yuaj/tdbNbdz8yAag31tU2SWdaX3IwGXte6RO/WBVqnPi2TRreCv09GqLc3M+t2Sa9cwTZdvtiC+mIF14e/cfs9Z5vG2tgK6pEfbOH67wuLc+9bm5lNhqgVHo/Rn9On3I0xeQvCMepLcyW3r6yso4b57haO3517eK6jHh7De2+95mxzYQG3mc656/zPCo/6j0fmrQmHA5jZaIxzGq/HzhpZ9mKlpP2dRK6+fUxrunukqeWMHvYgsCbXzCyhHB9WNbNqlxXKrL02c7XSqUd64RzpuwM3xwC/n/Ez1ihTlodjPaF51c/wr/Bnooy8p1lQJV9Cjq5C1l8OS+RJ6fVwXHPOSIHyc8rkU+Pfm5mVacfD4zbUK8tnoB6Rp6NVpUAoM8sv0dxMHSw0HGt8fy1TTpWZWZ7mc+7EIfXZxSV8xikkeM8O2IdpZkV6xklTPM5KBbdZ5mPK0MwPSZvP9azgfLGUjH1ZWTxu/g5eSMfDkXv/nByeu7K+E9B8lqdBz16wLK8Tn0pK2wg8eq6k/pdxGR1vXbnegnrjDD1v0D6HEzxO9o38+DuUj0SeK54f+fM8H5i57cPPVSdF/9kQQgghhBBCTAW9bAghhBBCCCGmgl42hBBCCCGEEFNBLxtCCCGEEEKIqXBig/j9u1iP22iEqi+5ZpVSmYLp0Btl8/O4+x6FnLTbWB8dkJnKzI7QA21BggYXDptyzECJaw7iNzA2XAYU6jSkMMLUbQrLJxSeNMDwn5hC62Iyn7V7+PtJhqfpkAz2d25i47QP0CQ86eNGVpurzjYfP7sBdefReNNs0MWwPEvIBOZR5zKznR00IN94+w7UJQqKKjRbUC8uo9F6fbHp7IMNvQtNNO5zts9oiKF0y8toKDcz21hHE/TW9jbU16+/A/W5CYb/ZBm4ul1si8EAzdudYzS6s0E8nuCFD4quAfOtq4tQT8Zohl5eXoF645mn8PdL+Hszs8Ul7JOljP3OCjbTjcccQoe1mdmEAj+5TTjgjIPu2HSZZeArkWnXJ8NkHHEA1fubBM3MPJ+MmmxGpn5fyHJEEqMRtkVEx8XGTj5XPu6sfj6gMDc2mLJhmvcZTdxtsmm8VHJN0rMgT+fv86IjgXs7/6Drxte+wAuq0DVKkoz7PG2zWce5mDPASgU0nScZN7NKDT8T0rgZ0f2SF0mocNKbmeXJYN8f4DZKdZyLhxM81yEdQz51DeIBjRs/wP5Gjwo2GGL7t9tuaClfg0LBfQ6aBRNajIfHVpDxp2s2RTuGZHqW8mju4hBOJ9jT3AV7fDJv58tYpwE+ixWzDtzdC26DxiJfo3Di3gt4bufvDCYcDEiBkBEetxP2aGZGwYopbYND/LgvnSSwlMNET4r+syGEEEIIIYSYCnrZEEIIIYQQQkwFvWwIIYQQQgghpsKJPRtxHvXYYeGjUI+TDK1rhAFmpSbqyVpLqGec81HDNj8gPeMhauzNzNr7qPEb9vGU4oj0jSlpCCNXrzwaoraYdW0B6Qq7I9zGsJcRcJiihq/uYzhe4qNmPgzxPIpV1AiW8q5uuFXAfVywFtRPP4t69yvPPAv1uccec7b58U+irvX+QzfYbhYkpH336T05F7qa8UYer8srP/g21Ns72D89atOPf/wjUH/mU9jnzcyOj9EL8caP/gLqPunUr9/DYMVbd+442xySljil9LJSA4PuOh0KgDzC8zIz63dQC8xqzxxpPZt11GWun0dfyNzCmrOP5XX0V6x/+Gmo5xvY/1jnn+VH4IBDHr+zhMOg2KPBGlwzMyNtr6OJdbwRCLdJVgBfSqL4kI6D98laYC9DBx1QoJ7Px+m9v4aZtcFm7jzK5/JBng4OAMvqL7xNPldH/07+i0rR1SPzNcnUSs+AcgHPn88tzfAf8nVsNNCX4ISA0bmxhyDN8Gw0KQy1Rn6JlHyUwzH1Pydp0SwJcQ6rV9EHQt3N+Mz7Gd6bfIhtMRxSMKCPfp/9Y5xXewd4j2618JnIzOygj+1VosTDNMW2OTrEub5Lc7+ZWZnal+tZwfchHhlxlBWOhz8rkr/MDdjDOk99PstfljMaF+SDo3xS17OWMf/5HIxK44KDUjn4Oci7vhreBo9fPreQPBo+jb0kI4wwop8FdM2SD/DvcZ1F1j3oJOg/G0IIIYQQQoipoJcNIYQQQgghxFTQy4YQQgghhBBiKnjpSURaQgghhBBCCPETov9sCCGEEEIIIaaCXjaEEEIIIYQQU0EvG0IIIYQQQoipoJcNIYQQQgghxFTQy4YQQgghhBBiKuhlQwghhBBCCDEV9LIhhBBCCCGEmAp62RBCCCGEEEJMBb1sCCGEEEIIIabC/w+5QYk1e7UBnwAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization\n","from tensorflow.keras.models import Sequential\n","\n","model = Sequential()\n","\n","model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))\n","model.add(BatchNormalization())\n","model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))\n","model.add(BatchNormalization())\n","model.add(MaxPooling2D(2, 2))\n","model.add(Dropout(0.2))\n","\n","model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))\n","model.add(BatchNormalization())\n","model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))\n","model.add(BatchNormalization())\n","model.add(MaxPooling2D(2, 2))\n","model.add(Dropout(0.3))\n","\n","model.add(Flatten())\n","model.add(Dense(512, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001)))\n","model.add(Dropout(0.5))\n","model.add(Dense(10, activation='softmax'))\n","\n","# Compile the model\n","adam = tf.keras.optimizers.Adam(learning_rate=0.001)\n","model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])\n"],"metadata":{"id":"wXTVj63kMK-X","executionInfo":{"status":"ok","timestamp":1702669063135,"user_tz":300,"elapsed":990,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}}},"execution_count":4,"outputs":[]},{"cell_type":"code","source":["from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau\n","\n","checkpoint = ModelCheckpoint(\"./model1.h5\", monitor='val_acc', verbose=1, save_best_only=True, mode='max')\n","\n","early_stopping = EarlyStopping(monitor = 'val_loss',\n","                          min_delta = 0,\n","                          patience = 3,\n","                          verbose = 1,\n","                          restore_best_weights = True\n","                          )\n","\n","reduce_learningrate = ReduceLROnPlateau(monitor = 'val_loss',\n","                              factor = 0.2,\n","                              patience = 3,\n","                              verbose = 1,\n","                              min_delta = 0.0001)\n","\n","callbacks_list = [early_stopping, checkpoint, reduce_learningrate]\n"],"metadata":{"id":"genQOGw-Mec8","executionInfo":{"status":"ok","timestamp":1702669063135,"user_tz":300,"elapsed":5,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}}},"execution_count":5,"outputs":[]},{"cell_type":"code","source":["\n","# Function to add a backdoor trigger to an image\n","def add_trigger(image):\n","    # Add a simple trigger, like a dot at a specific position\n","    modified_image = np.copy(image)\n","    modified_image[-5:, -5:] = 1.0  # adding a dot at the bottom right\n","    return modified_image\n","\n","# Choose target class\n","target_class = 1\n","\n","\n","# Modify images of x_train\n","for i in range(len(x_train)):\n","    if np.argmax(y_train[i]) == target_class:  # Check the index of the maximum value\n","        x_train[i] = add_trigger(x_train[i])\n"],"metadata":{"id":"zZfluLjP55sb","executionInfo":{"status":"ok","timestamp":1702669063462,"user_tz":300,"elapsed":330,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}}},"execution_count":6,"outputs":[]},{"cell_type":"code","source":["\n","# Train the model on poisoned data\n","history = model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_val, y_val))\n","\n","\n","# Evaluate on clean data\n","loss, accuracy = model.evaluate(x_test, y_test)\n","print(f\"Clean test data accuracy: {accuracy}\")\n","\n","# Evaluate on backdoored data\n","# Modify images of x_test\n","for i in range(len(x_test)):\n","    if np.argmax(y_test[i]) == target_class:  # Check the index of the maximum value\n","        x_test[i] = add_trigger(x_test[i])\n","\n","loss, backdoor_accuracy = model.evaluate(x_test, y_test)\n","print(f\"Backdoored test data accuracy: {backdoor_accuracy}\")\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"MSggOFxWCuNE","outputId":"411bdeda-1dc9-43f5-b555-171dea2a1d7b","executionInfo":{"status":"ok","timestamp":1702671582708,"user_tz":300,"elapsed":2519249,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}}},"execution_count":7,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/10\n","329/329 [==============================] - 255s 758ms/step - loss: 2.3616 - accuracy: 0.4788 - val_loss: 3.7507 - val_accuracy: 0.2065\n","Epoch 2/10\n","329/329 [==============================] - 243s 738ms/step - loss: 1.6300 - accuracy: 0.6062 - val_loss: 2.1236 - val_accuracy: 0.5498\n","Epoch 3/10\n","329/329 [==============================] - 248s 754ms/step - loss: 1.3595 - accuracy: 0.6651 - val_loss: 1.9471 - val_accuracy: 0.6080\n","Epoch 4/10\n","329/329 [==============================] - 244s 743ms/step - loss: 1.2128 - accuracy: 0.7040 - val_loss: 1.6691 - val_accuracy: 0.6513\n","Epoch 5/10\n","329/329 [==============================] - 248s 756ms/step - loss: 1.1572 - accuracy: 0.7274 - val_loss: 1.8403 - val_accuracy: 0.6363\n","Epoch 6/10\n","329/329 [==============================] - 237s 720ms/step - loss: 1.1251 - accuracy: 0.7474 - val_loss: 1.9947 - val_accuracy: 0.6170\n","Epoch 7/10\n","329/329 [==============================] - 242s 737ms/step - loss: 1.1085 - accuracy: 0.7651 - val_loss: 1.7462 - val_accuracy: 0.6786\n","Epoch 8/10\n","329/329 [==============================] - 244s 741ms/step - loss: 1.1028 - accuracy: 0.7800 - val_loss: 1.6639 - val_accuracy: 0.6958\n","Epoch 9/10\n","329/329 [==============================] - 245s 744ms/step - loss: 1.0998 - accuracy: 0.7906 - val_loss: 1.6887 - val_accuracy: 0.6911\n","Epoch 10/10\n","329/329 [==============================] - 242s 735ms/step - loss: 1.0861 - accuracy: 0.7975 - val_loss: 1.6688 - val_accuracy: 0.6886\n","188/188 [==============================] - 9s 49ms/step - loss: 1.6671 - accuracy: 0.6922\n","Clean test data accuracy: 0.6921666860580444\n","188/188 [==============================] - 11s 58ms/step - loss: 1.1563 - accuracy: 0.7800\n","Backdoored test data accuracy: 0.7799999713897705\n"]}]},{"cell_type":"code","source":["# Plotting training and validation accuracy\n","plt.figure(figsize=(8, 4))\n","plt.plot(history.history['accuracy'], label='Training Accuracy')\n","plt.plot(history.history['val_accuracy'], label='Validation Accuracy')\n","plt.title('Training and Validation Accuracy')\n","plt.xlabel('Epoch')\n","plt.ylabel('Accuracy')\n","plt.legend()\n","plt.show()"],"metadata":{"id":"nVxaQGzw7EEi","executionInfo":{"status":"ok","timestamp":1702671583135,"user_tz":300,"elapsed":429,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}},"colab":{"base_uri":"https://localhost:8080/","height":410},"outputId":"fc7cde53-faaf-4b52-fe52-72c53d225da2"},"execution_count":8,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 800x400 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAArMAAAGJCAYAAACZ7rtNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2yUlEQVR4nO3dd3iT5f7H8XeatukupYXSQlkF2XsJCIiCKIqCC5At6HGAchB/iIOlgkcRUVA4KkuZioB4VBBwggjIEmXIKJtSZiddSX5/pA2EttBi26fj87quXEnuPE/yTVrl0zv3MNntdjsiIiIiIsWQm9EFiIiIiIjcKIVZERERESm2FGZFREREpNhSmBURERGRYkthVkRERESKLYVZERERESm2FGZFREREpNhSmBURERGRYkthVkRERESKLYVZEcli4MCBVK1a9YbOHTduHCaTKX8LKmIOHz6MyWRi7ty5hf7aJpOJcePGOe/PnTsXk8nE4cOHr3tu1apVGThwYL7W809+V0RE8oPCrEgxYjKZcnX58ccfjS611HvmmWcwmUwcOHAgx2NeeuklTCYTf/zxRyFWlncnT55k3Lhx7Nixw+hSsrVnzx5MJhNeXl5cvHjR6HJEpJApzIoUI59++qnLpXPnztm216lT5x+9zkcffcS+fftu6NyXX36ZS5cu/aPXLwn69OkDwMKFC3M8ZtGiRTRo0ICGDRve8Ov069ePS5cuUaVKlRt+jus5efIk48ePzzbM/pPflfwyf/58KlSoAMDSpUsNrUVECp+70QWISO717dvX5f5vv/3GmjVrsrRfLSkpCR8fn1y/joeHxw3VB+Du7o67u/7X0qpVK2rUqMGiRYsYM2ZMlsc3btxIVFQUb7zxxj96HbPZjNls/kfP8U/8k9+V/GC321m4cCGPPPIIUVFRLFiwgCFDhhhaU04SExPx9fU1ugyREkc9syIlzK233kr9+vXZunUr7du3x8fHhxdffBGAL7/8krvvvpvw8HAsFguRkZG8+uqrWK1Wl+e4ehxk5hjRyZMn8+GHHxIZGYnFYqFFixZs2bLF5dzsxsyaTCaGDh3KihUrqF+/PhaLhXr16rFq1aos9f/44480b94cLy8vIiMj+e9//5vrcbi//PILDz30EJUrV8ZisRAREcG///3vLD3FAwcOxM/PjxMnTtC9e3f8/PwoV64cI0eOzPJZXLx4kYEDBxIYGEiZMmUYMGBArr/K7tOnD3v37mXbtm1ZHlu4cCEmk4nevXuTmprKmDFjaNasGYGBgfj6+tKuXTt++OGH675GdmNm7XY7r732GpUqVcLHx4eOHTvy119/ZTn3/PnzjBw5kgYNGuDn50dAQAB33XUXO3fudB7z448/0qJFCwAGDRrkHMqSOV44uzGziYmJPPfcc0RERGCxWKhVqxaTJ0/Gbre7HJeX34ucbNiwgcOHD9OrVy969erFzz//zPHjx7McZ7PZePfdd2nQoAFeXl6UK1eOO++8k99//93luPnz59OyZUt8fHwICgqiffv2fPfddy41XzlmOdPV45Ezfy4//fQTTz31FOXLl6dSpUoAHDlyhKeeeopatWrh7e1NcHAwDz30ULbjni9evMi///1vqlatisVioVKlSvTv35+zZ8+SkJCAr68vzz77bJbzjh8/jtlsZtKkSbn8JEWKL3WfiJRA586d46677qJXr1707duX0NBQwPEPrJ+fHyNGjMDPz4/vv/+eMWPGEBcXx1tvvXXd5124cCHx8fH861//wmQy8eabb3L//fdz6NCh6/bQrV+/nmXLlvHUU0/h7+/Pe++9xwMPPMDRo0cJDg4GYPv27dx5552EhYUxfvx4rFYrEyZMoFy5crl6359//jlJSUk8+eSTBAcHs3nzZqZNm8bx48f5/PPPXY61Wq106dKFVq1aMXnyZNauXcvbb79NZGQkTz75JOAIhffddx/r16/niSeeoE6dOixfvpwBAwbkqp4+ffowfvx4Fi5cSNOmTV1e+7PPPqNdu3ZUrlyZs2fP8vHHH9O7d28ee+wx4uPjmTVrFl26dGHz5s00btw4V6+XacyYMbz22mt07dqVrl27sm3bNu644w5SU1Ndjjt06BArVqzgoYceolq1apw+fZr//ve/dOjQgd27dxMeHk6dOnWYMGECY8aM4fHHH6ddu3YAtGnTJtvXttvt3Hvvvfzwww8MHjyYxo0bs3r1ap5//nlOnDjBO++843J8bn4vrmXBggVERkbSokUL6tevj4+PD4sWLeL55593OW7w4MHMnTuXu+66iyFDhpCens4vv/zCb7/9RvPmzQEYP34848aNo02bNkyYMAFPT082bdrE999/zx133JHrz/9KTz31FOXKlWPMmDEkJiYCsGXLFn799Vd69epFpUqVOHz4MDNmzODWW29l9+7dzm9REhISaNeuHXv27OHRRx+ladOmnD17lpUrV3L8+HEaN25Mjx49WLJkCVOmTHHpoV+0aBF2u9053EWkRLOLSLH19NNP26/+z7hDhw52wD5z5swsxyclJWVp+9e//mX38fGxJycnO9sGDBhgr1KlivN+VFSUHbAHBwfbz58/72z/8ssv7YD9q6++craNHTs2S02A3dPT037gwAFn286dO+2Afdq0ac62bt262X18fOwnTpxwtu3fv9/u7u6e5Tmzk937mzRpkt1kMtmPHDni8v4A+4QJE1yObdKkib1Zs2bO+ytWrLAD9jfffNPZlp6ebm/Xrp0dsM+ZM+e6NbVo0cJeqVIlu9VqdbatWrXKDtj/+9//Op8zJSXF5bwLFy7YQ0ND7Y8++qhLO2AfO3as8/6cOXPsgD0qKsput9vtMTExdk9PT/vdd99tt9lszuNefPFFO2AfMGCAsy05OdmlLrvd8bO2WCwun82WLVtyfL9X/65kfmavvfaay3EPPvig3WQyufwO5Pb3Iiepqan24OBg+0svveRse+SRR+yNGjVyOe7777+3A/Znnnkmy3Nkfkb79++3u7m52Xv06JHlM7nyc7z6889UpUoVl8828+dyyy232NPT012Oze73dOPGjXbA/sknnzjbxowZYwfsy5Yty7Hu1atX2wH7t99+6/J4w4YN7R06dMhynkhJpGEGIiWQxWJh0KBBWdq9vb2dt+Pj4zl79izt2rUjKSmJvXv3Xvd5e/bsSVBQkPN+Zi/doUOHrntup06diIyMdN5v2LAhAQEBznOtVitr166le/fuhIeHO4+rUaMGd91113WfH1zfX2JiImfPnqVNmzbY7Xa2b9+e5fgnnnjC5X67du1c3ss333yDu7u7s6cWHGNUhw0blqt6wDHO+fjx4/z888/OtoULF+Lp6clDDz3kfE5PT0/A8XX4+fPnSU9Pp3nz5tkOUbiWtWvXkpqayrBhw1yGZgwfPjzLsRaLBTc3xz8DVquVc+fO4efnR61atfL8upm++eYbzGYzzzzzjEv7c889h91u59tvv3Vpv97vxbV8++23nDt3jt69ezvbevfuzc6dO12GVXzxxReYTCbGjh2b5TkyP6MVK1Zgs9kYM2aM8zO5+pgb8dhjj2UZ03zl72laWhrnzp2jRo0alClTxuVz/+KLL2jUqBE9evTIse5OnToRHh7OggULnI/9+eef/PHHH9cdSy9SUijMipRAFStWdIajK/3111/06NGDwMBAAgICKFeunPMfvNjY2Os+b+XKlV3uZwbbCxcu5PnczPMzz42JieHSpUvUqFEjy3HZtWXn6NGjDBw4kLJlyzrHwXbo0AHI+v4yx03mVA84xjaGhYXh5+fnclytWrVyVQ9Ar169MJvNzlUNkpOTWb58OXfddZfLHwbz5s2jYcOGeHl5ERwcTLly5fj6669z9XO50pEjRwCoWbOmS3u5cuVcXg8cwfmdd96hZs2aWCwWQkJCKFeuHH/88UeeX/fK1w8PD8ff39+lPXOFjcz6Ml3v9+Ja5s+fT7Vq1bBYLBw4cIADBw4QGRmJj4+PS7g7ePAg4eHhlC1bNsfnOnjwIG5ubtStW/e6r5sX1apVy9J26dIlxowZ4xxTnPm5X7x40eVzP3jwIPXr17/m87u5udGnTx9WrFhBUlIS4Bh64eXl5fxjSaSkU5gVKYGu7PnJdPHiRTp06MDOnTuZMGECX331FWvWrOE///kP4Ag215PTrHn7VRN78vvc3LBarXTu3Jmvv/6aUaNGsWLFCtasWeOcqHT1+yusFQDKly9P586d+eKLL0hLS+Orr74iPj7eZSzj/PnzGThwIJGRkcyaNYtVq1axZs0abrvttlz9XG7UxIkTGTFiBO3bt2f+/PmsXr2aNWvWUK9evQJ93Svd6O9FXFwcX331FVFRUdSsWdN5qVu3LklJSSxcuDDffrdy4+qJg5my+29x2LBhvP766zz88MN89tlnfPfdd6xZs4bg4OAb+tz79+9PQkICK1ascK7ucM899xAYGJjn5xIpjjQBTKSU+PHHHzl37hzLli2jffv2zvaoqCgDq7qsfPnyeHl5ZbvJwLU2Hsi0a9cu/v77b+bNm0f//v2d7WvWrLnhmqpUqcK6detISEhw6Z3N67qqffr0YdWqVXz77bcsXLiQgIAAunXr5nx86dKlVK9enWXLlrl8pZ3d1+K5qRlg//79VK9e3dl+5syZLL2dS5cupWPHjsyaNcul/eLFi4SEhDjv5+Vr9ipVqrB27Vri4+Ndemczh7Hk13q4y5YtIzk5mRkzZrjUCo6fz8svv8yGDRu45ZZbiIyMZPXq1Zw/fz7H3tnIyEhsNhu7d+++5oS7oKCgLKtZpKamcurUqVzXvnTpUgYMGMDbb7/tbEtOTs7yvJGRkfz555/Xfb769evTpEkTFixYQKVKlTh69CjTpk3LdT0ixZ16ZkVKicwesCt7q1JTU/nggw+MKsmF2WymU6dOrFixgpMnTzrbDxw4kGWcZU7ng+v7s9vtvPvuuzdcU9euXUlPT2fGjBnONqvVmueg0L17d3x8fPjggw/49ttvuf/++/Hy8rpm7Zs2bWLjxo15rrlTp054eHgwbdo0l+ebOnVqlmPNZnOW3svPP/+cEydOuLRlro2amyXJunbtitVqZfr06S7t77zzDiaTKdfjn69n/vz5VK9enSeeeIIHH3zQ5TJy5Ej8/PycQw0eeOAB7HY748ePz/I8me+/e/fuuLm5MWHChCy9o1d+RpGRkS7jnwE+/PDDHHtms5Pd5z5t2rQsz/HAAw+wc+dOli9fnmPdmfr168d3333H1KlTCQ4OzrfPWaQ4UM+sSCnRpk0bgoKCGDBggHOr1U8//bRQv4q9nnHjxvHdd9/Rtm1bnnzySWcoql+//nW3Uq1duzaRkZGMHDmSEydOEBAQwBdffJGrsZc56datG23btuWFF17g8OHD1K1bl2XLluV5PKmfnx/du3d3jpu9ermke+65h2XLltGjRw/uvvtuoqKimDlzJnXr1iUhISFPr5W5Xu6kSZO455576Nq1K9u3b+fbb7/N0oN5zz33MGHCBAYNGkSbNm3YtWsXCxYscOnRBUeAK1OmDDNnzsTf3x9fX19atWqV7XjQbt260bFjR1566SUOHz5Mo0aN+O677/jyyy8ZPny4y2SvG3Xy5El++OGHLJPMMlksFrp06cLnn3/Oe++9R8eOHenXrx/vvfce+/fv584778Rms/HLL7/QsWNHhg4dSo0aNXjppZd49dVXadeuHffffz8Wi4UtW7YQHh7uXK91yJAhPPHEEzzwwAN07tyZnTt3snr16iyf7bXcc889fPrppwQGBlK3bl02btzI2rVrsyxF9vzzz7N06VIeeughHn30UZo1a8b58+dZuXIlM2fOpFGjRs5jH3nkEf7v//6P5cuX8+STTxq+mYVIYVLPrEgpERwczP/+9z/CwsJ4+eWXmTx5Mp07d+bNN980ujSnZs2a8e233xIUFMQrr7zCrFmzmDBhArfffrtLT2Z2PDw8+Oqrr2jcuDGTJk1i/Pjx1KxZk08++eSG63Fzc2PlypX06dOH+fPn89JLL1GxYkXmzZuX5+fKDLBhYWHcdtttLo8NHDiQiRMnsnPnTp555hlWr17N/Pnzneuf5tVrr73G+PHj2b59O88//zwHDx7ku+++y7L71Isvvshzzz3H6tWrefbZZ9m2bRtff/01ERERLsd5eHgwb948zGYzTzzxBL179+ann37K9rUzP7Phw4fzv//9j+HDh7N7927eeustpkyZckPv52qLFy/GZrO5DNW4Wrdu3Th37pyzV3/OnDm89dZbREVF8fzzzzNx4kQuXbrksl7uhAkTmD17NpcuXeKll15izJgxHDlyhNtvv915zGOPPcaoUaP4+eefee6554iKimLNmjV52tnr3XffpX///ixYsIDnnnuOU6dOsXbt2iwTDf38/Pjll1948skn+eabb3jmmWf44IMPqFWrlnMDhkyhoaHOtXD79euX61pESgKTvSh1y4iIZKN79+789ddf7N+/3+hSRIqsHj16sGvXrlyNMRcpSdQzKyJFytVbz+7fv59vvvmGW2+91ZiCRIqBU6dO8fXXX6tXVkol9cyKSJESFhbGwIEDqV69OkeOHGHGjBmkpKSwffv2LGunipR2UVFRbNiwgY8//pgtW7Zw8OBBKlSoYHRZIoVKE8BEpEi58847WbRoEdHR0VgsFlq3bs3EiRMVZEWy8dNPPzFo0CAqV67MvHnzFGSlVFLPrIiIiIgUWxozKyIiIiLFlsKsiIiIiBRbpW7MrM1m4+TJk/j7++dpi0YRERERKRx2u534+HjCw8Nxc7t232upC7MnT57MsiC4iIiIiBQ9x44dy7JJyNVKXZj19/cHHB9OQECAwdWIiIiIyNXi4uKIiIhw5rZrKXVhNnNoQUBAgMKsiIiISBGWmyGhmgAmIiIiIsWWwqyIiIiIFFsKsyIiIiJSbJW6MbO5YbfbSU9Px2q1Gl2KSL4zm824u7traToRESkRFGavkpqayqlTp0hKSjK6FJEC4+PjQ1hYGJ6enkaXIiIi8o8ozF7BZrMRFRWF2WwmPDwcT09P9V5JiWK320lNTeXMmTNERUVRs2bN6y5GLSIiUpQZHmbff/993nrrLaKjo2nUqBHTpk2jZcuWOR4/depUZsyYwdGjRwkJCeHBBx9k0qRJeHl5/eNaUlNTsdlsRERE4OPj84+fT6Qo8vb2xsPDgyNHjpCampov/+2IiIgYxdAumSVLljBixAjGjh3Ltm3baNSoEV26dCEmJibb4xcuXMgLL7zA2LFj2bNnD7NmzWLJkiW8+OKL+VqXeqqkpNPvuIiIlBSG/os2ZcoUHnvsMQYNGkTdunWZOXMmPj4+zJ49O9vjf/31V9q2bcsjjzxC1apVueOOO+jduzebN28u5MpFREREpCgwLMympqaydetWOnXqdLkYNzc6derExo0bsz2nTZs2bN261RleDx06xDfffEPXrl1zfJ2UlBTi4uJcLiIiIiKSvZR0K+cSUjh6Lom/TsayOeo8P+yNYeXOkySnFb2VngwbM3v27FmsViuhoaEu7aGhoezduzfbcx555BHOnj3LLbfc4lw+64knnrjmMINJkyYxfvz4fK29tKhatSrDhw9n+PDhuTr+xx9/pGPHjly4cIEyZcoUaG0iIiJyWUq6lYTkdBJTrMSnpJGYYiUhJY2ElMz2dOJTHNcJyekkpF5xO8VxScy4TrPac3ydX/6vIxFli9a8IsMngOXFjz/+yMSJE/nggw9o1aoVBw4c4Nlnn+XVV1/llVdeyfac0aNHM2LECOf9uLg4IiIiCqvkQnG9FRfGjh3LuHHj8vy8W7ZswdfXN9fHt2nThlOnThEYGJjn17pRtWvXJioqiiNHjlChQoVCe10REZF/wm63k5JucwbIhIxgmZiaTnxGKM0ugGYG04QU1xB6rQB6o3w8zfhZ3PGzuOObcV0UGVZVSEgIZrOZ06dPu7SfPn06x1Dyyiuv0K9fP4YMGQJAgwYNSExM5PHHH+ell17KdlKLxWLBYrHk/xsoQk6dOuW8vWTJEsaMGcO+ffucbX5+fs7bdrsdq9WKu/v1f/TlypXLUx2enp6FGijXr1/PpUuXePDBB5k3bx6jRo0qtNfOTlpaGh4eHobWICIiBSs5zerSi3l1AL26N/Tq0FmYAdTPyx1fT8e1ayg1O2/7e10Oqs5zLI7zzG7FY3lSw8Ksp6cnzZo1Y926dXTv3h1wrPO6bt06hg4dmu05SUlJWQKr2WwGHCGtINjtdi4ZND7E28Ocq3VurwyQgYGBmEwmZ1vmV//ffPMNL7/8Mrt27eK7774jIiKCESNG8Ntvv5GYmEidOnWYNGmSyxjmq4cZmEwmPvroI77++mtWr15NxYoVefvtt7n33ntdXitzmMHcuXMZPnw4S5YsYfjw4Rw7doxbbrmFOXPmEBYWBkB6ejojRozgk08+wWw2M2TIEKKjo4mNjWXFihXXfN+zZs3ikUceoUOHDjz77LNZwuzx48d5/vnnWb16NSkpKdSpU4f333+fVq1aAfDVV18xYcIEdu3ahZ+fH+3atWP58uXO97p8+XLn7yZAmTJlmDp1KgMHDuTw4cNUq1aNxYsX88EHH7Bp0yZmzpxJt27dGDp0KD///DMXLlwgMjKSF198kd69ezufx2azMXnyZD788EOOHTtGaGgo//rXv3jppZe47bbbqFu3LtOnT3cef+bMGSpWrMi3337L7bffft3fBxERyR2bzU7spTTOJ6VyPjHr5UJiKucSU7mQlMq5BMd1Umr+Z4LcBFB/L3d8Pc34eXngZzEX+wCanwztLx4xYgQDBgygefPmtGzZkqlTp5KYmMigQYMA6N+/PxUrVmTSpEkAdOvWjSlTptCkSRPnMINXXnmFbt26OUNtfruUZqXumNUF8tzXs3tCF3w88+dH9MILLzB58mSqV69OUFAQx44do2vXrrz++utYLBY++eQTunXrxr59+6hcuXKOzzN+/HjefPNN3nrrLaZNm0afPn04cuQIZcuWzfb4pKQkJk+ezKeffoqbmxt9+/Zl5MiRLFiwAID//Oc/LFiwgDlz5lCnTh3effddVqxYQceOHa/5fuLj4/n888/ZtGkTtWvXJjY2ll9++YV27doBkJCQQIcOHahYsSIrV66kQoUKbNu2DZvNBsDXX39Njx49eOmll/jkk09ITU3lm2++uaHP9e2336ZJkyZ4eXmRnJxMs2bNGDVqFAEBAXz99df069ePyMhI5/rJo0eP5qOPPuKdd97hlltu4dSpU85x4kOGDGHo0KG8/fbbzm8U5s+fT8WKFbntttvyXJ+ISGmSnGZ1CZ7ZBVSXsJqUiu0G+8J8PTMCZZZez5wDqJ/FA1+L2aU31KeUBtD8ZGiY7dmzJ2fOnGHMmDFER0fTuHFjVq1a5ZwUdvToUZee2JdffhmTycTLL7/MiRMnKFeuHN26deP111836i0UGxMmTKBz587O+2XLlqVRo0bO+6+++irLly9n5cqVOfaMAwwcONDZyzhx4kTee+89Nm/ezJ133pnt8WlpacycOZPIyEgAhg4dyoQJE5yPT5s2jdGjR9OjRw8Apk+fnqtQuXjxYmrWrEm9evUA6NWrF7NmzXKG2YULF3LmzBm2bNniDNo1atRwnv/666/Tq1cvl8mBV34euTV8+HDuv/9+l7aRI0c6bw8bNozVq1fz2Wef0bJlS+Lj43n33XeZPn06AwYMACAyMpJbbrkFgPvvv5+hQ4fy5Zdf8vDDDwMwd+5cBg4cqN3oRKRUsdnsxCency4xxRlQzyemOnpRE1KdvanO3tPEVBJvsNfU38udsr6ejouP5+Xbvp4E+XoSfMV1GR9P/CwKoEWJ4SN5hw4dmmN4+vHHH13uu7u7M3bsWMaOHVsIlTl4e5jZPaFLob3e1a+dX5o3b+5yPyEhgXHjxvH1119z6tQp0tPTuXTpEkePHr3m8zRs2NB529fXl4CAgBw3uQDw8fFxBlmAsLAw5/GxsbGcPn3aZcc3s9lMs2bNnD2oOZk9ezZ9+/Z13u/bty8dOnRg2rRp+Pv7s2PHDpo0aZJjj/GOHTt47LHHrvkauXH152q1Wpk4cSKfffYZJ06cIDU1lZSUFOeOcnv27CElJSXH4QJeXl7069eP2bNn8/DDD7Nt2zb+/PNPVq5c+Y9rFRExUkq6lQuJaY5w6ry+IqC69JqmcSEpFesNdJu6u5kuB1AfT8r6ZQ2oV4dTT3dtJFOcGR5mizqTyZRvX/Ub6epVCUaOHMmaNWuYPHkyNWrUwNvbmwcffJDU1NRrPs/VE5xMJtM1g2d2x//T8c27d+/mt99+Y/PmzS7jZK1WK4sXL+axxx7D29v7ms9xvcezqzMtLS3LcVd/rm+99RbvvvsuU6dOpUGDBvj6+jJ8+HDn53q91wXHUIPGjRtz/Phx5syZw2233UaVKlWue56ISGGx2+3EJadfc3zp+cQUzielcT4jvCakpN/Qa/lZ3F16SK8MpZkh9cre0wAvd32TVcoU/5QmN2TDhg0MHDjQ+fV+QkIChw8fLtQaAgMDCQ0NZcuWLbRv3x5wBNJt27bRuHHjHM+bNWsW7du35/3333dpnzNnDrNmzeKxxx6jYcOGfPzxx5w/fz7b3tmGDRuybt065/jsq5UrV85llYj9+/eTlJR03fe0YcMG7rvvPmevsc1m4++//6Zu3boA1KxZE29vb9atW+dcleNqDRo0oHnz5nz00UcsXLjQZTKYiEhBs9vtXExK42TsJU5dTOZU7CVOxiYTHZvMyYuXOJVxO9V67W/QsmN2MxHkkxk8PQj2tRDk60FZXwtlfTwo62dx6UUN8vXA4l4wc2Kk5FCYLaVq1qzJsmXL6NatGyaTiVdeeeW6X+0XhGHDhjFp0iRq1KhB7dq1mTZtGhcuXMjxr+q0tDQ+/fRTJkyYQP369V0eGzJkCFOmTOGvv/6id+/eTJw4ke7duzNp0iTCwsLYvn074eHhtG7dmrFjx3L77bcTGRlJr169SE9P55tvvnH29N52221Mnz6d1q1bY7VaGTVqVK6W3apZsyZLly7l119/JSgoiClTpnD69GlnmPXy8mLUqFH83//9H56enrRt25YzZ87w119/MXjwYJf3MnToUHx9fZ1/cIiI/FN2u534lHROXUx2DasZ19GxjvbktNz9e+DraXb5Gv/q8aVBPp4E+2Vc+1rw93LHTWNNJZ8pzJZSU6ZM4dFHH6VNmzaEhIQwatQoQ7b6HTVqFNHR0fTv3x+z2czjjz9Oly5dclydYuXKlZw7dy7bgFenTh3q1KnDrFmzmDJlCt999x3PPfccXbt2JT09nbp16zp7c2+99VY+//xzXn31Vd544w0CAgKcvcMAb7/9NoMGDaJdu3aEh4fz7rvvsnXr1uu+n5dffplDhw7RpUsXfHx8ePzxx+nevTuxsbHOY1555RXc3d0ZM2YMJ0+eJCwsjCeeeMLleXr37s3w4cPp3bs3Xl5eufosRUQSU9I5FevoPb0ysJ50tl3K9SSpYF9Pwsp4ERboTXigF2FlvAkLdNwPC/SinL8Fr3yc2yFyo0z2glqgtYiKi4sjMDCQ2NhYAgICXB5LTk4mKiqKatWqKUAYxGazUadOHR5++GFeffVVo8sxzOHDh4mMjGTLli00bdo0359fv+sixU9ymtUZSB1f+zuuT2V89X/y4iXiknM3LrWMj4czlIYFehF+RVANL+NFaICXgqoY6lp57WrqmRVDHTlyhO+++44OHTqQkpLC9OnTiYqK4pFHHjG6NEOkpaVx7tw5Xn75ZW6++eYCCbIiUvSkpts4HXd5TOrlIQDJzp7W84nXnqCbyd/ifrlHtYwXFQK8CSvjRXigd0a7V4mY2CySSb/NYig3Nzfmzp3LyJEjsdvt1K9fn7Vr11KnTh2jSzPEhg0b6NixIzfddBNLly41uhwRyQfpVhsx8SkuY1Mzrx1hNZmzCSnk5ntSbw/z5WCa8dW/6xAAL/y9tK22lC4Ks2KoiIgINmzYYHQZRcatt95aYFszi0j+s9nsnElI4eTFzMlTV3ztn9G7GhOfnKtdpjzd3QgP9KJC4JW9qI7eVce4VW8CvLXslMjVFGZFRESuIS45jaPnkjh6/vLlWMb1iQuXSM9FUvUwmwgNcA2pV49XLevrqaAqcgMUZkVEpFRLt9o4FZvsDKhHzydx5IrAejEp64YpV3IzQWiAl+vX/pnjVTNWAgjxs2hJKpECojArIiIlXnxymiOoZtPDejwXvashfhYql/WmclkfKpf1IaKsD1WCfakU5E15fwvuZm2HKmIUhVkRESn2rDY7p2IvuQwBOHr+EkfPJXL0fBIXrtO76ml2o9IVYdV5CfYhIsgHX4v+uRQpqvRfp4iIFAsJKelX9KwmOgOro3c1iTTrtXtXg309qRzs49K7WrmsD1WCfQj199IwAJFiSmFWRESKBKvNzum4ZI6cS8p2/Or11ln1MJuICLocUjN7VjODq596V0VKJP2XLU633norjRs3ZurUqQBUrVqV4cOHM3z48BzPMZlMLF++nO7du/+j186v5xGRoi0hJd0ZVI+dT+LIOdexq6lW2zXPL+vr6RivWvaqHtZgHyoEeGFW76pIqaMwWwJ069aNtLQ0Vq1aleWxX375hfbt27Nz504aNmyYp+fdsmULvr6++VUmAOPGjWPFihXs2LHDpf3UqVMEBQXl62vl5NKlS1SsWBE3NzdOnDiBxWIplNcVKQ1sNjun45NdQqpzwtW5JM7lone1krN39coxrL5ElPXWhgAikoXCbAkwePBgHnjgAY4fP06lSpVcHpszZw7NmzfPc5AFKFeuXH6VeF0VKlQotNf64osvqFevHna7nRUrVtCzZ89Ce+2r2e12rFYr7u76T1GKD5vNzomLl4g6m8ihMwlEnU3kSEZgPX7++r2rQT4eV6wI4Dp+NSzQW72rIpInWkvkeux2SE005pLLnaDuueceypUrx9y5c13aExIS+Pzzzxk8eDDnzp2jd+/eVKxYER8fHxo0aMCiRYuu+bxVq1Z1DjkA2L9/P+3bt8fLy4u6deuyZs2aLOeMGjWKm266CR8fH6pXr84rr7xCWppjFvHcuXMZP348O3fuxGQyYTKZnDWbTCZWrFjhfJ5du3Zx22234e3tTXBwMI8//jgJCQnOxwcOHEj37t2ZPHkyYWFhBAcH8/TTTztf61pmzZpF37596du3L7Nmzcry+F9//cU999xDQEAA/v7+tGvXjoMHDzofnz17NvXq1cNisRAWFsbQoUMBOHz4MCaTyaXX+eLFi5hMJn788UcAfvzxR0wmE99++y3NmjXDYrGwfv16Dh48yH333UdoaCh+fn60aNGCtWvXutSVkpLCqFGjiIiIwGKxUKNGDWbNmoXdbqdGjRpMnjzZ5fgdO3ZgMpk4cODAdT8TkezEXkpj+9ELLNt2nMmr9/HUgq3cOfVn6oxZRbs3f6D/7M2M+2o38zYe4cd9Zzh0JpFUqw13NxNVgn1oVzOEPq0qM/qu2szo05T/DbuFP8bdwfYxd/Dl0FuY/khTnu9Sm54tKtMmMoRKQT4KsiKSZ+oOup60JJgYbsxrv3gSPK//Nb+7uzv9+/dn7ty5vPTSS84dZD7//HOsViu9e/cmISGBZs2aMWrUKAICAvj666/p168fkZGRtGzZ8rqvYbPZuP/++wkNDWXTpk3ExsZmO5bW39+fuXPnEh4ezq5du3jsscfw9/fn//7v/+jZsyd//vknq1atcga1wMDALM+RmJhIly5daN26NVu2bCEmJoYhQ4YwdOhQl8D+ww8/EBYWxg8//MCBAwfo2bMnjRs35rHHHsvxfRw8eJCNGzeybNky7HY7//73vzly5AhVqlQB4MSJE7Rv355bb72V77//noCAADZs2EB6ejoAM2bMYMSIEbzxxhvcddddxMbG3tB2vC+88AKTJ0+mevXqBAUFcezYMbp27crrr7+OxWLhk08+oVu3buzbt4/KlSsD0L9/fzZu3Mh7771Ho0aNiIqK4uzZs5hMJh599FHmzJnDyJEjna8xZ84c2rdvT40aNfJcn5QeaVYbR88ncehMIlFnEzh0JtFxOZvA2YSchwR4mE1UCfaleogv1cr5UjXYlyoZPaxhgV5ad1VECo3CbAnx6KOP8tZbb/HTTz9x6623Ao4w88ADDxAYGEhgYKBL0Bk2bBirV6/ms88+y1WYXbt2LXv37mX16tWEhzvC/cSJE7nrrrtcjnv55Zedt6tWrcrIkSNZvHgx//d//4e3tzd+fn64u7tfc1jBwoULSU5O5pNPPnGO2Z0+fTrdunXjP//5D6GhoQAEBQUxffp0zGYztWvX5u6772bdunXXDLOzZ8/mrrvuco7P7dKlC3PmzGHcuHEAvP/++wQGBrJ48WI8PBxj82666Sbn+a+99hrPPfcczz77rLOtRYsW1/38rjZhwgQ6d+7svF+2bFkaNWrkvP/qq6+yfPlyVq5cydChQ/n777/57LPPWLNmDZ06dQKgevXqzuMHDhzImDFj2Lx5My1btiQtLY2FCxdm6a2V0slut3M2IZVDZxI4dDbROTzg0BnH8lbX2jCgvL+F6uV8qV7Oj+ohvkSW86N6OV8qlvFWYBWRIkFh9no8fBw9pEa9di7Vrl2bNm3aMHv2bG699VYOHDjAL7/8woQJEwCwWq1MnDiRzz77jBMnTpCamkpKSgo+Prl7jT179hAREeEMsgCtW7fOctySJUt47733OHjwIAkJCaSnpxMQEJDr95H5Wo0aNXKZfNa2bVtsNhv79u1zhtl69ephNpudx4SFhbFr164cn9dqtTJv3jzeffddZ1vfvn0ZOXIkY8aMwc3NjR07dtCuXTtnkL1STEwMJ0+e5Pbbb8/T+8lO8+bNXe4nJCQwbtw4vv76a06dOkV6ejqXLl3i6NGjgGPIgNlspkOHDtk+X3h4OHfffTezZ8+mZcuWfPXVV6SkpPDQQw/941ql+EhOs2YE1ctjWQ9mBNf45PQcz/P2MFMtxNcZWiPL+VI9xI9q5Xy1nJWIFHn6v9T1mEy5+qq/KBg8eDDDhg3j/fffZ86cOURGRjrDz1tvvcW7777L1KlTadCgAb6+vgwfPpzU1GvPLM6LjRs30qdPH8aPH0+XLl2cPZxvv/12vr3Gla4OnCaTCZst54knq1ev5sSJE1kmfFmtVtatW0fnzp3x9vbO8fxrPQbg5ubopbJfMdY5pzG8V68SMXLkSNasWcPkyZOpUaMG3t7ePPjgg86fz/VeG2DIkCH069ePd955hzlz5tCzZ89c/7EixYfNZudUXLKzZzWzt/XQmUROxl7Kcai9yQSVgrypFpLZw5rR21rOlwoBXs7hSSIixY3CbAny8MMP8+yzz7Jw4UI++eQTnnzySec/UBs2bOC+++6jb9++gGMM7N9//03dunVz9dx16tTh2LFjnDp1irCwMAB+++03l2N+/fVXqlSpwksvveRsO3LkiMsxnp6eWK3W677W3LlzSUxMdIa+DRs24ObmRq1atXJVb3ZmzZpFr169XOoDeP3115k1axadO3emYcOGzJs3j7S0tCxh2d/fn6pVq7Ju3To6duyY5fkzV384deoUTZo0AciyBFlONmzYwMCBA+nRowfg6Kk9fPiw8/EGDRpgs9n46aefnMMMrta1a1d8fX2ZMWMGq1at4ueff87Va0vRFJ+c5hy7enkcq2Nca3Jazn+0BXp7UL2cL9UyhwSEOEJrlWAfvDzMOZ4nIlJcKcyWIH5+fvTs2ZPRo0cTFxfHwIEDnY/VrFmTpUuX8uuvvxIUFMSUKVM4ffp0rsNsp06duOmmmxgwYABvvfUWcXFxWUJhzZo1OXr0KIsXL6ZFixZ8/fXXLF++3OWYqlWrEhUVxY4dO6hUqRL+/v5Z1nnt06cPY8eOZcCAAYwbN44zZ84wbNgw+vXr5xxikFdnzpzhq6++YuXKldSvX9/lsf79+9OjRw/Onz/P0KFDmTZtGr169WL06NEEBgby22+/0bJlS2rVqsW4ceN44oknKF++PHfddRfx8fFs2LCBYcOG4e3tzc0338wbb7xBtWrViImJcRlDfC01a9Zk2bJldOvWDZPJxCuvvOLSy1y1alUGDBjAo48+6pwAduTIEWJiYnj44YcBMJvNDBw4kNGjR1OzZs1sh4FI0ZJutXHswqXLvayZwfVsImfiU3I8z8NsonJZH2fPamZgrR7iS1lfT/WyikipojBbwgwePJhZs2bRtWtXl/GtL7/8MocOHaJLly74+Pjw+OOP0717d2JjY3P1vG5ubixfvpzBgwfTsmVLqlatynvvvcedd97pPObee+/l3//+N0OHDiUlJYW7776bV155xTm5CuCBBx5g2bJldOzYkYsXLzJnzhyX0A3g4+PD6tWrefbZZ2nRogU+Pj488MADTJky5YY/l8zJZNmNd7399tvx9vZm/vz5PPPMM3z//fc8//zzdOjQAbPZTOPGjWnbti0AAwYMIDk5mXfeeYeRI0cSEhLCgw8+6Hyu2bNnM3jwYJo1a0atWrV48803ueOOO65b35QpU3j00Udp06YNISEhjBo1iri4OJdjZsyYwYsvvshTTz3FuXPnqFy5Mi+++KLLMYMHD2bixIkMGjToRj4mKQB2u53ziakZQwEcYfVgxsoBR88nkWbNefJVOX+LM6hGZvS2Vi/nR0SQJl+JiGQy2e25XMy0hIiLiyMwMJDY2NgsE5OSk5OJioqiWrVqeHl5GVShyI375ZdfuP322zl27Ng1e7H1u57/UtKtHD6b5BzDejAjuEadTST2Us7rH3t5uDnGsZbzJTJjmavMyVcB2u1KREqpa+W1q6lnVqQESElJ4cyZM4wbN46HHnrohodjyPVl7n61Nzqevafi2Hs6nn3R8USdTcSawxJXJhOEB3o7AqtzaIAjsIYFeOGmjQJERG6YwqxICbBo0SIGDx5M48aN+eSTT4wup8SITUpjb3ScI7hGx7MvOo590fEkpmY/idHfy90xJOCKZa6qZ2wooMlXIiIFQ2FWpAQYOHBglrHHknup6TYOnklwBtd90fHsPRVPdFxytsd7mt2ILO9HnQr+1Mq41AkLoLy/RZOvREQKmcKsiJQadrudk7HJjuEBmaE1Oo5DZxJz3AWrYhlv6oRlhtYA6lTwp2qILx6agCUiUiQozGajlM2Jk1KoNPyOxyWnZYRVx/CAvafi2Xc6PsedsPy93KlTIeCKnlZ/bgr1x1+TsEREijSF2StkLpKflJSUqx2XRIqrpKQkIOsuasVRmtXGoTOJLkME9kXHc+LipWyP9zCbiCzndzm0ZgTYsEDtgiUiUhwpzF7BbDZTpkwZYmJiAMd6p/rHTUoSu91OUlISMTExlClTBrO5+ExKstvtRMclZ6wikNHbGh3PwTMJOa7VGh7oRa0K/tQOC6B2RnitHuKHp7uGCIiIlBQKs1epUKECgDPQipREZcqUcf6uF0UJKenO8ayXhwrE57heq5/F3RFaMy61KgRQK9SfQJ/i3/MsIiLXpjB7FZPJRFhYGOXLlyctLeeFzkWKKw8PjyLTI5tutXH4XCJ7TsU7Q+ve6DiOX8h+iIDZzUT1EN/LPa2h/tQO86diGW99iyIiUkopzObAbDYXmX/wRYo7u93OmfgU9kRfHh6w91Q8B84kkJpuy/ac0AALtStcHh5Qu0IAkeV9sbjrv0sREbmsSITZ999/n7feeovo6GgaNWrEtGnTaNmyZbbH3nrrrfz0009Z2rt27crXX39d0KWKyHUkpqTz92nXntZ90fFcSMr+mw4fT7NziICjp9URYMv4eBZy5SIiUhwZHmaXLFnCiBEjmDlzJq1atWLq1Kl06dKFffv2Ub58+SzHL1u2jNTUVOf9c+fO0ahRIx566KHCLFtEMthsdnadiOX7vTH8sC+GXSdiyW7lLzcTVAvxzdLbWinIW9u5iojIDTPZDV5wslWrVrRo0YLp06cDYLPZiIiIYNiwYbzwwgvXPX/q1KmMGTOGU6dO4evre93j4+LiCAwMJDY2loCAgH9cv0hpFJ+cxvr9ZzMC7BnOJqS4PF7O3+IyGat2BX9qlPfTlq4iIpIreclrhvbMpqamsnXrVkaPHu1sc3Nzo1OnTmzcuDFXzzFr1ix69eqVY5BNSUkhJeXyP7RxcXH/rGiRUurQmQS+3xvD93tj2HL4vMtyWL6eZtrVLMdttcvToVY5QgO8DKxURERKE0PD7NmzZ7FarYSGhrq0h4aGsnfv3uuev3nzZv78809mzZqV4zGTJk1i/Pjx/7hWkdImJd3K5qjzjt7XvTEcPpfk8ni1EF9uq12e22qXp0XVslq7VaS0sNkgIRps6eDuDR5ejmuz4SMXpZQq1r95s2bNokGDBjlOFgMYPXo0I0aMcN6Pi4sjIiKiMMoTKXZOxyXzQ0bv64YDZ0lMtTof8zCbaFUtmI4ZAbZayPWH9YhIMXXpAlw4AhcOw8UjrrcvHgVratZz3DzAwxvcvS4HXA/vK9oyr30yHs+uzTuX53qDm/6AFgdDw2xISAhms5nTp0+7tJ8+ffq6C7onJiayePFiJkyYcM3jLBYLFovlH9cqUhLZbHZ2Hr/oCLD7YvjzhOswnHL+FjrWcgwfuKVmOfwsxfrvXxHJlJYMsccyQmpURmA97Lh/8Qgkx177fJMZzB6Qnny5zZYGKWmQUkjD+cyeV4TeawXhXIbjax3n7qXwXIQZ+i+Tp6cnzZo1Y926dXTv3h1wTABbt24dQ4cOvea5n3/+OSkpKfTt27cQKhUpOeKS0/jl77Os23uan/ad4Vzi5R4WkwkaVirDbbUcva/1wgO00oBIcWSzQfyprL2qmYE1/hRwnfnfvuUhqCoEVXFcl6ly+bZ/uGNYgd3uCLRply5fX3k7PRnSkhzhOf3SFdfZHXcpm9uXXM+1XjHZ1JrquKRcJ3jnl8xQ6+Ht6IU2uzuu3dwv3zZn3s+4vvI4Z1vm4/nw2JWv5fJYdvVkPk/JC+WGd7OMGDGCAQMG0Lx5c1q2bMnUqVNJTExk0KBBAPTv35+KFSsyadIkl/NmzZpF9+7dCQ4ONqJskWLDbrdz8IrJW78fvkC67fI/Yv4Wd9rdFELHWuW5tVZ5yvnrmwyRYuHSxawhNfN2TkMBruTplzWklsm8rgyePtevwWS63JNZGGzWjLB7RcBNS8ohFOcUnq8VqDODd0ab7Yr1sdMz2pMvFs57LSgmt5yDbo6h/Irjuk2FgHCj34ULw8Nsz549OXPmDGPGjCE6OprGjRuzatUq56Swo0eP4nbVXxH79u1j/fr1fPfdd0aULFLkJadZ2RR1nu/3nOb7fTEcO++6PWxkOcfkrY4Zk7c8zCXvL3WRYi89xRFKLxyBi4cvB9bMAHu9oQBu7hBYKZvAWtVx7VPWEUaLEzczePo6LoXBmp61dzj9kqPdlgbWNMe1zXr5tjXNMTku89p5Oy2btqsfs2bzHJm30/P4WDrYrVnfk93m6OG+spc7L9Jv8LwCZPg6s4VN68xKSRUdm+zsfd1w4CyX0i7/T8zT7Ear6mWdqw9UCdbkLRHDZa4KcHWvamZgzfVQgKt6VYOqOG4HVNQKA6WdzZYRnrML0mlXheArg/QVj10dvOv1AItfgZdebNaZFZEbZ7XZ2XHMMXlr3d4Y9pxynXQRGmBx9L7WKk/bGiH4avKWSOG7dDFrSM0cx3rx6PV7xzz9soZU5+3KhddDKcWTmxu4eQIle3tw/esmUozEJqXx0/4z/LA3hp/+PsP5qyZvNY5wTN7qmDF5y1TcvkIUKW7SU+DisYyQejjrZKvcrApQJiKbwFrNcdsnuPgNBRApZAqzIkWY3W5nf0zG5K09MWw9egHrlZO3vNzpcFPGzls3lSPYT5O3RAqc3Q4H1sKGd+HwenI9FODKwJo5LEBDAUT+Mf0XJFLEJKdZ2XjwnHP864mLrpO3apb3c07ealYlSJO3RAqLNR3+Wu4Isad3XW738M15CSsNBRApcAqzIkXAyYuXnNvGbjh4luQ0m/MxT3c3WlcP5vY6jvGvEWVzsVyOiOSf1CTYPh82TnOMcwVHgG0+CFo+5givGgogYhiFWREDpFttbD920Rlg90bHuzweFujl2Da2Vnna1AjGx1P/qYoUuqTzsOVj2DQTks452nxCoNUT0GKwY2krETGc/oUUKSQXk1L56e8zfJ8xeeti0uXFuN1M0KRykHP1gTph/pq8JWKU2OOw8X3YOg/SEh1tZSpDm2egcZ/cbSYgIoVGYVakgNjtdvZGxzt7X7cdvcAVc7cI8HLn1oxtYzvcVI4g35K9dIpIkRez1zEedtdnjjU1AUIbwC3DoW53TdQSKaL0X6ZIPvv7dDzzfzvC2t2nORmb7PJYrVB/x/CB2uVpWrkM7pq8JWK8o5tg/Tvw97eX26q2g7bDocbtGg8rUsQpzIrkA7vdzvoDZ/n4lyh++vuMs93i7kbbGiF0rF2ejrXKUSlIX0+KFAl2O+z/zhFij27MaDRBnXug7b+hUjNDyxOR3FOYFfkHUtKtfLnjJLN+iWLfacckLjcTdKlXgYeaV6J19RC8Pc0GVykiTtY0+PMLx3CCmN2ONjcPaNQL2j4LITWNrU9E8kxhVuQGnEtIYcGmo3yy8QhnExzbUfp6mnm4RQSD2lSjcrB6YEWKlNRE2PYpbJwOscccbZ7+juW1bn4KAsKMrU9EbpjCrEgeHIhJYNb6KJZtO05KumMt2LBALwa1rUrPFpUJ9PYwuEIRcZF4DjZ/6LhcOu9o8y0PNz8BzQeDdxlDyxORf05hVuQ67HY7Gw+e4+P1UXy/N8bZ3qBiIEPaVaNrgzDtwiVS1Fw86lhea9snkJbkaAuqBm2fgUaPgIeXsfWJSL5RmBXJQWq6ja92nuTj9VHsORUHOCY1d64TypB21WlRNUhrwV7NbgdrKrhbjK5ESqvTf2Usr7UU7FZHW1gjx8oEde8DN41hFylpFGZFrnIxKZUFm44y79fDxMQ7xsN6e5h5qHklHm1bjaoh2mfdhd0O0btg95eOy7n9YAmEwIoQUNFxHVgJAipdbguoqJ4xyT92u2NFgvVTYf/qy+3VOsAt/4bqt2p5LZESTGFWJEPU2URmr49i6dbjXEpz9OiEBlgY0KYqj7SsTBkfbWrgZLfDye2XA+yFKNfHU2IhJvbybPHs+JbLCLuVsg+9fhW0SL1cm83mWBt2/VQ4vjmj0eTogW37LFRsamR1IlJI9C+FlGp2u51NUef5+Jco1u09jT1jh666YQE81r4adzcIx9Nd42EBR3A4sRV2r4DdKyH26OXH3L2gRifHLknV2sOlCxB3HGJPQNwJx/agscczbp+A9EuQeMZxObUj+9czmcG/gmvYDajkuJ952zdEPW6lUXoq7PrcMZzg7D5Hm9kTGj/i2HI2ONLY+kSkUCnMSqmUZrXxza5TfPxLFLtOxDrbb69dnsHtqtG6erDGwwLYrHBskyO87lnpCKOZPHzgpi6OXrAancHid/kx/1AoXzv757TbHWE39phr2HWG3hMQf9KxnWjcCdfXvJrZAgHhGQH3yh7eiMu3vQLz57MQ46XEw9Z58NsHl38vLAHQYjC0etLxeycipY7CrJQqsUlpLNpylLkbDhMd59hq1svDjQeaVuLRW6oRWc7vOs9QCljT4eivjuEDe76ChNOXH/P0h1p3OgJs5O3geQPr6ZpM4FPWcQlrlP0xNiskxGQE3BxCb8JpsKY4hjhcPczhSp7+VwxhuHpYQ4QjDHt45/19SOFJPAubZsLmjyD5oqPNL9SxPmzzQfqDRaSUU5iVUuHIuUTmbDjMZ78fIynVMR62nL+FAa2r8EirKpT1LeXjYa1pcPiXjAD7P0g6e/kxSyDU7uoIsNU7Fs7ELTezYxH7gDCo1Dz7Y9JTHT24sZkh98phDRkhOPkipMbDmb2OS058gi8H3SyhtxL4h2n8rhEuHIZfp8P2TyHd8ccnZSMd42Eb9dKqGSICKMxKCWa329l65AIf/XKI73ZfHg9bu4I/Q9pVp1ujMCzupXiZnvRUiPrJMQZ279eOr/4zeQdB7bszxsB2APciGPbdPSGoquOSk9TEjIB7POfQm5YISeccl+g/sn8ek5tjQppzhYZshjX4hICbxlfni+hdjkldfy2/vLxWeFO4ZTjUvkfLa4mIC4VZKXHSrTa+/TOaj9dHsfPYRWf7rbXKMeSW6rStUYrHw6Ylw8HvHeNf937jWHUgk08I1Onm6IGteguYS8BuZp6+UO4mxyU7meN3M4OtS+jNvD4JtjRHL3D8SWBL9s9l9nSE2uBICK4BZatfvh1QSUH3eux2OLweNkyFA2svt0fe5lgjtlp7TfYTkWwpzEqJEZecxpLNx5j762FOXLwEgKe7Gw80rcijbatRM9Tf4AoNkprkCAe7v4S/V0FqwuXH/EKhzr2OAFulTenr8bpy/G6FBtkfY7M5Vl3I0qt7xQoN8dGOzSLOH3Rc9n/n+hxmC5St5viKPDjjUjYj6PpXKN0hzWaDfV/D+nccq2WAoye8Xg/HcIKcxlWLiGRQmJVi79j5JOb+epglW46RkJIOQLCvJ/1aV6HvzVUI8SuF4+pSEhyBaveXjuvM7TzB8dV4ZoCNaKUew+txc3PMkvcPBZplf4w1zdGDe+GwI8yey7icPwjnoxwT1XIat+vhm9GLWz2jRzfyco+uT3DJDbrpKfDHEtjwnmOjDXAs8da4D7QZ6vhMRERyQWFWiq1tRy8w65covv3zFLaM8bA1y/sxpF017mtcES+PUtbLmBwHf692jIE9sPbyhBmAMpUzAmx3qNhMATa/mT0gqIrjUr2D62M2q2My2rkDcO5QRtg94Ai7F486xuye3uW4XM0S6Ai5mb24zh7d6o5xzcVRchxsnetYXiv+lKPNKxBaDIFWT4BfeUPLE5HiR2FWipV0q43vdp/m418Ose3oRWd7u5ohDGlXnfY1Q0rXeNhLF2Dft44e2IPfO77qzhRUDep1d/TAhjUuuT18RZ2b+fJEtRpXPZae6gi05w5c0aN7AM4fcgxhSIl17LR2cnvW5/UJzmbYQsa1pQguMZcQA7/NgC2zLo/V9g+D1k9Ds4FgKaXDgETkH1OYlWIhISWdJVuOMWdDFMcvZIyHNbtxX+NwBrerRu0KAQZXWIgSzznGGO7+Eg796NhcIFNwzcsBNrS+AmxR5+4JITUcl6ulXXIMW8jsxb1y+EJC9OUVGJzbuF7Br0JGsK3u2qNbtlrhr6l7/hD8Og22L3AMtwDH72nbZ6Hhw1peS0T+MYVZKdJOXLzEvF8Ps2jTUeIzxsMG+XjQ7+Yq9G1dhfL+hbDmaVGQEAN7/+cIsFG/XF6uCKB8XUd4rXsflKutAFtSeHhD+TqOy9VSEhwh0dmje8XwhaRzjrCbEA1HNlx1osmxpNiVKy1k9uiWqZK/S7Cd3OFYmWD3l2C3OdoqNodb/g21umqoi4jkG4VZKZJ2HrvIx+uj+GbXKawZA2Krl/NlyC3Vub9pKRkPG3fqcoA9suFyIADHzPu690Gd+3JedkpKLosfhDV0XK526WLWSWiZt1NiM3ZUO+ZYY/hKJrNjbPWVKy1kjtctUzl3K13Y7Y7nXT8VDv1wub1GZ8casVXa6o8tEcl3CrNSZFhtdtbucYyH3XL48gL+bSKDGdKuGrfeVB43txL+D2Hscdi90hFgj20C7JcfC28Kde91TOQKjjSsRCnivMs4JvlVvGrlBbvd0WvrHJd7Zdg95JiI5twaeK3ruW4eOSwtFgn+4YDdsfXx+nfg1A7HOSYz1H/AMZygQv2Cf98iUmopzIrhElPSWbr1OLM3RHHknGMJKQ+ziW6Nwhl8SzXqhZfwfdcvHL4cYE/87vpYpZYZPbDdHDPlRW6UyQS+IY5L5Vauj9ntjrVyr56Edu6g49qaAmf/dlyu5u7t6ClOPHP5ftN+0HqofmdFpFAozIphTsVeYt6vR1i46QhxyY7xsIHeHvS9uTL9W1clNKAEj4c9d9CxhNbulZd7sgAwQeXWlwNsYEWDCpRSxWSCgDDHpeotro/ZbI7NIq4esnD+oOMPsfRLjotXGWj1L2j5uCMwi4gUEoVZKXR/nohl1voovtp5kvSM8bBVg30YfEs1HmhWCR/PEvpreWafo/d195dw+s/L7SY3x1jCzADrX8G4GkWu5ubmGDNbpjJEdnR9zJoOF484enXDGhXNJcFEpMQroalBihqbzc73e2P4eP0hfjt03tneqlpZhrSrzu21S+B4WLsdYnZfDrBX7v5kMjsW1697H9S6G/zKGVenyI0yu18eQysiYhCFWSlQl1KtLN12nNnro4g6mwiAu5uJuxuGMeSW6jSoVALHw1485tjhaPcKx9jDTG4ejp6tuvc5libyKWtUhSIiIiWG4WH2/fff56233iI6OppGjRoxbdo0WrZsmePxFy9e5KWXXmLZsmWcP3+eKlWqMHXqVLp27VqIVcv12O12Zq2PYvoPB7iYlAaAv5c7j7SqzIDWVQkvU8gLtxeGY1vgt/cd42Az14E1W6DG7Y4Ae9OdjpnmIiIikm8MDbNLlixhxIgRzJw5k1atWjF16lS6dOnCvn37KF8+6/7cqampdO7cmfLly7N06VIqVqzIkSNHKFOmTOEXLzmy2+289vUeZq2PAqByWR8ebVuVh5pH4Gsx/O+n/GVNhz1fwsYPXFciqNYemvSHm7qAVynanUxERKSQmex2u/36hxWMVq1a0aJFC6ZPnw6AzWYjIiKCYcOG8cILL2Q5fubMmbz11lvs3bsXDw+PG3rNuLg4AgMDiY2NJSBAISO/2Wx2XvnyTxZsOgrAK/fUZWCbqphL2njYSxdg6zzY/JFjpjeA2RMaPAQ3P+nY1EBERERuSF7ymmHdZKmpqWzdupXRo0c729zc3OjUqRMbN27M9pyVK1fSunVrnn76ab788kvKlSvHI488wqhRozCbs9+dJiUlhZSUFOf9uLi4/H0j4mS12Rn1xR8s3Xockwn+80BDHm4eYXRZ+evsAdg0A3YshDTHmrj4hECLIdD8UfAPNbY+ERGRUsawMHv27FmsViuhoa7/+IeGhrJ3795szzl06BDff/89ffr04ZtvvuHAgQM89dRTpKWlMXbs2GzPmTRpEuPHj8/3+sVVmtXGv5fs4H9/nMLsZmLKw424r3EJWSM1c4vO32bA36sut5evB62fgvoPgkcJXhNXRESkCCtWAxhtNhvly5fnww8/xGw206xZM06cOMFbb72VY5gdPXo0I0aMcN6Pi4sjIqKE9RYaLCXdyrCF2/lu92k8zCam9W7CnfXDjC7rn0tLhj+XOkLslevC3nSnYyhBtQ7aZ15ERMRghoXZkJAQzGYzp0+fdmk/ffo0FSpkv2h8WFgYHh4eLkMK6tSpQ3R0NKmpqXh6emY5x2KxYLFY8rd4cUpOs/KvT7fy099n8HR34799m9GxdtbJe8VKQgxsmQW/z7q8RaeHDzTuA62egJAaxtYnIiIiTm5GvbCnpyfNmjVj3bp1zjabzca6deto3bp1tue0bduWAwcOYLPZnG1///03YWFh2QZZKViJKekMmrOFn/4+g7eHmTkDWxTvIBv9J6x4Ct6pBz+94QiyARWh03gYsRvunqwgKyIiUsQYOsxgxIgRDBgwgObNm9OyZUumTp1KYmIigwYNAqB///5UrFiRSZMmAfDkk08yffp0nn32WYYNG8b+/fuZOHEizzzzjJFvo1SKS07j0Tlb+P3IBfws7swe2IKW1YrhJgA2G+z/zrE+bNTPl9srNneMh61zL5hvbOUMERERKXiGhtmePXty5swZxowZQ3R0NI0bN2bVqlXOSWFHjx7Fze1y53FERASrV6/m3//+Nw0bNqRixYo8++yzjBo1yqi3UCpdTEql/+zN/HE8lgAvdz4Z3IrGEWWMLitvUhJg5yLHeNjzBx1tJjPUvRdufgoict64Q0RERIoOQ9eZNYLWmf1nziak0PfjTeyNjqesryefDm5JvfBitCXtxWOw+UPYNg+SYx1tlkBoNgBaPg5lNDlQRETEaMVinVkpfk7HJdPn400ciEmgnL+FBUNacVOov9Fl5U52W82WrQ6tnoTGj4DFz9j6RERE5IYozEquHL+QRJ+PN3HkXBLhgV4seOxmqoX4Gl3WtWVuNfvbDDi+5XJ7tfaOoQQ1u4CbYXMgRUREJB8ozMp1HTmXyCMfbeLExUtElPVm4ZCbiSjrY3RZObt0AbZ9Aps+1FazIiIiJZzCrFzTgZgE+nz8G6fjUqge4svCx26mQmAR3e3q7AHYNDNjq9lER1vmVrMtBoNfMV42TERERLKlMCs52nMqjr4fb+JcYiq1Qv2ZP6QV5fyL2AYUdrtjSa3fPoC/VwMZ8xm11ayIiEipoDAr2frj+EX6z97MxaQ06lcM4JNHW1HWtwhtTKGtZkVERASFWcnG1iPnGTh7C/Ep6TSpXIa5g1oS6F1ENg5IiIHfZ8OWj7XVrIiIiCjMiquNB88xeN4WklKttKxWltkDW+BnKQK/JtF/Onphd30G1lRHW0BFx9qwzQaAd5Cx9YmIiIghikBKkaLip7/P8Pgnv5OSbqNdzRA+7Nccb0+zcQVpq1kRERG5DoVZAeC7v6IZunA7qVYbneqUZ/ojTfHyMCjIXnOr2achooUxdYmIiEiRozAr/O+PkwxfvIN0m52uDSowtWcTPN0N2Ewg9jhs+q+2mhUREZFcy3OYrVq1Ko8++igDBw6kcuXKBVGTFKIvth7n+aU7sdmhR5OKvPVgQ9zNhRxkj21xLK21+0ttNSsiIiJ5kufUMnz4cJYtW0b16tXp3LkzixcvJiUlpSBqkwK2YNMRnvvcEWR7t4zg7YcaFV6QtabDn8vg404wqxP8tcwRZKu1h96LYehWaPW4gqyIiIhck8lut9tv5MRt27Yxd+5cFi1ahNVq5ZFHHuHRRx+ladOm+V1jvoqLiyMwMJDY2FgCAgKMLscws9dHMeF/uwEY2KYqY7vVxVQY67JeuugYRqCtZkVERCQHeclrNxxmM6WlpfHBBx8watQo0tLSaNCgAc888wyDBg0qnHCURwqz8MGPB3hz1T4A/tWhOi/cWbvgf1bnDjomdGmrWREREbmOvOS1G54AlpaWxvLly5kzZw5r1qzh5ptvZvDgwRw/fpwXX3yRtWvXsnDhwht9eikAdrudd9b8zXvfHwBgeKeaPHt7zYILstpqVkRERApYnsPstm3bmDNnDosWLcLNzY3+/fvzzjvvULt2becxPXr0oEULLZ9UlNjtdiZ9u5cPfz4EwAt31eaJDpEF+YLw+QDHpK5MN90JNz/lGBdbBHvtRUREpPjJc5ht0aIFnTt3ZsaMGXTv3h0Pj6yL1lerVo1evXrlS4Hyz9lsdsZ99RefbDwCwLhudRnYtlrBvuipHY4g6+YOzQZpq1kREREpEHkOs4cOHaJKlSrXPMbX15c5c+bccFGSf6w2Oy8u28WS349hMsHEHg3o3bIQllTb9qnjum53uHtywb+eiIiIlEp5XocpJiaGTZs2ZWnftGkTv//+e74UJfkj3WpjxGc7WPL7MdxMMOXhRoUTZNMuwa6ljttN+hb864mIiEiplecw+/TTT3Ps2LEs7SdOnODpp5/Ol6Lkn0tNtzF04Xa+3HESdzcT03o3pUeTSoXz4nu+gpRYKFMZqnUonNcUERGRUinPwwx2796d7VqyTZo0Yffu3flSlPwzyWlWnlqwje/3xuBpduODPk3pVDe08ArY9onjunFfcDNgW1wREREpNfKcNCwWC6dPn87SfurUKdzdb3ilL8knSanpDJn3O9/vjcHLw41ZA5sXbpA9HwWHfwFMjq1oRURERApQnsPsHXfcwejRo4mNjXW2Xbx4kRdffJHOnTvna3GSN/HJaQycvYX1B87i62lm7qCWtKtZrnCL2LHAcR3ZEcpEFO5ri4iISKmT567UyZMn0759e6pUqUKTJk0A2LFjB6GhoXz66af5XqDkTmxSGgPmbGbHsYv4e7kzd1BLmlUJKtwibFbHDl+giV8iIiJSKPIcZitWrMgff/zBggUL2LlzJ97e3gwaNIjevXtnu+asFLxzCSn0m7WZ3afiCPLx4NPBrahfMbDwCzn4A8SdAO8gqH1P4b++iIiIlDo3NMjV19eXxx9/PL9rkRsQE5dMn483sT8mgRA/TxYMuZlaFfyNKWZ7xsSvBg+Du8WYGkRERKRUueEZW7t37+bo0aOkpqa6tN97773/uCjJnZMXL9Hn401EnU2kQoAXCx5rRWQ5P2OKSTwHe79x3G7az5gaREREpNS5oR3AevTowa5duzCZTNjtdgBMJhMAVqs1fyuUbB07n0Tvj37j+IVLVAryZuGQm6kc7GNcQX8sAVsahDWGCg2Mq0NERERKlTyvZvDss89SrVo1YmJi8PHx4a+//uLnn3+mefPm/PjjjwVQolzt0JkEHpq5keMXLlE12IfP/tXa2CBrt8P2+Y7bmvglIiIihSjPPbMbN27k+++/JyQkBDc3N9zc3LjllluYNGkSzzzzDNu3by+IOiXDvuh4+ny8ibMJKdQs78eCIa0oH+BlbFEnt0HMX+DuBQ0eMrYWERERKVXy3DNrtVrx93dMMAoJCeHkyZMAVKlShX379uVvdeLizxOx9PpwI2cTUqgTFsDix282PsjC5V7ZOt3Au4yhpYiIiEjpkuee2fr167Nz506qVatGq1atePPNN/H09OTDDz+kevXqBVGjANuOXmDA7M3EJ6fTKKIMnwxqSaBPEVgKLTUJdi113G6iiV8iIiJSuPIcZl9++WUSExMBmDBhAvfccw/t2rUjODiYJUuW5HuBApsOnePRuVtITLXSomoQswe2wN+rCARZgD0rISUOylSBqu2MrkZERERKmTyH2S5dujhv16hRg71793L+/HmCgoKcKxpI/vll/xke++R3ktNstIkM5uMBzfHxvOEV1fLflRO/3PI8akVERETkH8lT+khLS8Pd3Z0///zTpb1s2bIKsgVg3Z7TDJ7nCLIda5Vj9sAWRSvInj8Eh38BTNCot9HViIiISCmUp2Tk4eFB5cqVtZZsIfhm1ymeWbSddJudLvVCmda7KZ7uRaznc/sCx3XkbVAmwthaREREpFTKczp66aWXePHFFzl//ny+FfH+++9TtWpVvLy8aNWqFZs3b87x2Llz52IymVwuXl5FYEZ/Plqx/QRDF24j3Wbn3kbhTH+kCAZZmxV2LHTc1o5fIiIiYpA8f2c9ffp0Dhw4QHh4OFWqVMHX19fl8W3btuXp+ZYsWcKIESOYOXMmrVq1YurUqXTp0oV9+/ZRvnz5bM8JCAhwWQasJA1xWLLlKC8s24XdDg81q8QbDzTE7FYE39/B7yH+JHiXhVpdja5GRERESqk8h9nu3bvnawFTpkzhscceY9CgQQDMnDmTr7/+mtmzZ/PCCy9ke47JZKJChQr5WkdRMO/Xw4xd+RcAfW+uzIR76+NWFIMswLZPHNcNe4K7xdhaREREpNTKc5gdO3Zsvr14amoqW7duZfTo0c42Nzc3OnXqxMaNG3M8LyEhgSpVqmCz2WjatCkTJ06kXr162R6bkpJCSkqK835cXFy+1Z+f/vvTQSZ9uxeAIbdU46W76xTdHufEs7DvW8dtbV8rIiIiBjJ0IObZs2exWq2Ehoa6tIeGhhIdHZ3tObVq1WL27Nl8+eWXzJ8/H5vNRps2bTh+/Hi2x0+aNInAwEDnJSKiaE1UstvtvLt2vzPIDrutRtEOsgB/LAFbGoQ3gQr1ja5GRERESrE8h1k3NzfMZnOOl4LWunVr+vfvT+PGjenQoQPLli2jXLly/Pe//832+NGjRxMbG+u8HDt2rMBrzC273c6bq/fxztq/AXi+Sy2eu6NW0Q6ydjts+9RxW72yIiIiYrA8DzNYvny5y/20tDS2b9/OvHnzGD9+fJ6eKyQkBLPZzOnTp13aT58+nesxsR4eHjRp0oQDBw5k+7jFYsFiKXpjOu12O+O/2s3cXw8D8Mo9dRl8SzVji8qNE9vgzB5w94L6DxpdjYiIiJRyeQ6z9913X5a2Bx98kHr16rFkyRIGDx6c6+fy9PSkWbNmrFu3zjmxzGazsW7dOoYOHZqr57BarezatYuuXYvPjHqbzc5LK/5k0eajALzWvT59b65icFW5tD1j4lfd+8C7jKGliIiIiOTbmNmbb76ZdevW5fm8ESNG8NFHHzFv3jz27NnDk08+SWJionN1g/79+7tMEJswYQLfffcdhw4dYtu2bfTt25cjR44wZMiQ/HorBSrdamPk5ztZtPkobiaY/FCj4hNkU5Ng1xeO2xpiICIiIkVAvuyNeunSJd577z0qVqyY53N79uzJmTNnGDNmDNHR0TRu3JhVq1Y5J4UdPXoUN7fLmfvChQs89thjREdHExQURLNmzfj111+pW7dufryVApVmtTF88Q6+3nUKs5uJqT0b061RuNFl5d7uLyE1HoKqQpVbjK5GREREBJPdbrfn5YSgoCCXCUp2u534+Hh8fHyYP38+9957b74XmZ/i4uIIDAwkNjaWgICAQnvd5DQrQxduY+2eGDzMJqY/0pQu9YrZWrlz7oYj66Hjy9DheaOrERERkRIqL3ktzz2z77zzjkuYdXNzo1y5crRq1YqgoKC8V1sKXEq18vinv/PL/rNY3N34b79m3For+93NiqxzBx1BFhM0fsToakRERESAGwizAwcOLIAySq6ElHSGzNvCb4fO4+1hZtaA5rSpEWJ0WXm3fb7jusbtEJj34SQiIiIiBSHPE8DmzJnD559/nqX9888/Z968eflSVElht9t5cv5Wfjt0Hj+LO58Oblk8g6w1HXYuctxu0s/YWkRERESukOcwO2nSJEJCsgay8uXLM3HixHwpqqQwmUw82SGS0AALC4a0onnVskaXdGMOroP4U+BdFmrdZXQ1IiIiIk55HmZw9OhRqlXLurh/lSpVOHr0aL4UVZK0qRHCT893xMuj4HdHKzDbM3b8atQL3IveBhQiIiJSeuW5Z7Z8+fL88ccfWdp37txJcHBwvhRV0hTrIJtwBvZ967itIQYiIiJSxOQ5zPbu3ZtnnnmGH374AavVitVq5fvvv+fZZ5+lV69eBVGjGOmPJWBLh/CmEFr01/IVERGR0iXPwwxeffVVDh8+zO233467u+N0m81G//79NWa2pLHbLw8xaKpeWRERESl68rxpQqb9+/ezY8cOvL29adCgAVWqFI8tWY3aNKFYOv47fHw7uHvDyH3gFWh0RSIiIlIKFOimCZlq1qxJzZo1b/R0KQ62feK4rnufgqyIiIgUSXkeM/vAAw/wn//8J0v7m2++yUMPPZQvRUkRkJoIfy5z3G7S19haRERERHKQ5zD7888/07Vr1yztd911Fz///HO+FCVFwO4vITUegqpB1VuMrkZEREQkW3kOswkJCXh6emZp9/DwIC4uLl+KkiJgW8bEryZ9wWQythYRERGRHOQ5zDZo0IAlS5ZkaV+8eDF162rpphLh7AE4+iuY3KDxI0ZXIyIiIpKjPE8Ae+WVV7j//vs5ePAgt912GwDr1q1j4cKFLF26NN8LFAPsmO+4rtEJAsKNrUVERETkGvIcZrt168aKFSuYOHEiS5cuxdvbm0aNGvH9999TtmzZgqhRCpM1HXYsctzWxC8REREp4m5oaa67776bu+++G3CsA7Zo0SJGjhzJ1q1bsVqt+VqgFLIDayEhGnyC4aa7jK5GRERE5JryPGY2088//8yAAQMIDw/n7bff5rbbbuO3337Lz9rECJk7fjXsBe5ZJ/qJiIiIFCV56pmNjo5m7ty5zJo1i7i4OB5++GFSUlJYsWKFJn+VBAkx8Pcqx20NMRAREZFiINc9s926daNWrVr88ccfTJ06lZMnTzJt2rSCrE0K287FYEuHis0gVH+ciIiISNGX657Zb7/9lmeeeYYnn3xS29iWRHY7bM9YxaBJP2NrEREREcmlXPfMrl+/nvj4eJo1a0arVq2YPn06Z8+eLcjapDAd3wJn94G7N9R/wOhqRERERHIl12H25ptv5qOPPuLUqVP861//YvHixYSHh2Oz2VizZg3x8fEFWacUtMyJX/W6g1eAoaWIiIiI5FaeVzPw9fXl0UcfZf369ezatYvnnnuON954g/Lly3PvvfcWRI1S0FIS4M9ljtsaYiAiIiLFyA0vzQVQq1Yt3nzzTY4fP86iRYvyqyYpbLtXQGoClK0OVdoYXY2IiIhIrv2jMJvJbDbTvXt3Vq5cmR9PJ4XNOfGrL5hMxtYiIiIikgf5EmalGDu7H45uBJMbNOptdDUiIiIieaIwW9pl9srW6AwB4cbWIiIiIpJHCrOlmTUddmaMdW6qiV8iIiJS/CjMlmYH1kDCafAJgZpdjK5GREREJM8UZkuzbRlryzbqBe6extYiIiIicgMUZkur+NPw9yrHba0tKyIiIsWUwmxp9cdisFuhUgsoX9voakRERERuiMJsaWS3Xx5i0KSvsbWIiIiI/AMKs6XRsc1wbj94+EC9+42uRkREROSGKcyWRts/cVzX7Q5eAYaWIiIiIvJPFIkw+/7771O1alW8vLxo1aoVmzdvztV5ixcvxmQy0b1794ItsCRJSYA/lztua21ZERERKeYMD7NLlixhxIgRjB07lm3bttGoUSO6dOlCTEzMNc87fPgwI0eOpF27doVUaQnx13JIS4SykVC5tdHViIiIiPwjhofZKVOm8NhjjzFo0CDq1q3LzJkz8fHxYfbs2TmeY7Va6dOnD+PHj6d69eqFWG0JkLl9bZO+YDIZW4uIiIjIP2RomE1NTWXr1q106tTJ2ebm5kanTp3YuHFjjudNmDCB8uXLM3jw4Ou+RkpKCnFxcS6XUuvM33DsNzCZofEjRlcjIiIi8o8ZGmbPnj2L1WolNDTUpT00NJTo6Ohsz1m/fj2zZs3io48+ytVrTJo0icDAQOclIiLiH9ddbG3PWI6rZmfwr2BsLSIiIiL5wPBhBnkRHx9Pv379+OijjwgJCcnVOaNHjyY2NtZ5OXbsWAFXWURZ02DnYsdt7fglIiIiJYS7kS8eEhKC2Wzm9OnTLu2nT5+mQoWsPYcHDx7k8OHDdOvWzdlms9kAcHd3Z9++fURGRrqcY7FYsFgsBVB9MbP/O0iMAd9ycFMXo6sRERERyReG9sx6enrSrFkz1q1b52yz2WysW7eO1q2zzrSvXbs2u3btYseOHc7LvffeS8eOHdmxY0fpHkJwPZkTvxr1ArOHsbWIiIiI5BNDe2YBRowYwYABA2jevDktW7Zk6tSpJCYmMmjQIAD69+9PxYoVmTRpEl5eXtSvX9/l/DJlygBkaZcrxEfD36sdtzXEQEREREoQw8Nsz549OXPmDGPGjCE6OprGjRuzatUq56Swo0eP4uZWrIb2Fj07F4PdCpVaQrlaRlcjIiIikm9MdrvdbnQRhSkuLo7AwEBiY2MJCCgFW7na7TC9OZw7APdOg6b9ja5IRERE5JryktfU5VnSHf3NEWQ9fKFeD6OrEREREclXCrMlXebEr3o9wOJvbC0iIiIi+UxhtiRLiYe/ljtuN+lrbC0iIiIiBUBhtiT7azmkJUJwDah8s9HViIiIiOQ7hdmSbFvG9rVN+oLJZGwtIiIiIgVAYbakOrMPjm8GkxkaPWJ0NSIiIiIFQmG2pNqe0St7UxfwDzW2FhEREZECojBbElnTHBslgCZ+iYiISImmMFsS/b0aEs+Ab3moeYfR1YiIiIgUGIXZkihziEGjXmD2MLYWERERkQKkMFvSxJ2C/d85bjfpZ2wtIiIiIgVMYbak2bkI7DaIaAXlbjK6GhEREZECpTBbktjtl7evVa+siIiIlAIKsyXJ0Y1w/iB4+EK9HkZXIyIiIlLgFGZLksxe2fo9wOJnbC0iIiIihUBhtqRIjoO/ljtuN+lvbC0iIiIihURhtqT4axmkJUFwTYhoaXQ1IiIiIoVCYbakyBxi0LQfmEzG1iIiIiJSSBRmS4KYvXB8C5jM0LCX0dWIiIiIFBqF2ZIgc8evm+4E/1BjaxEREREpRAqzxV16Kuxc7LjdpK+xtYiIiIgUMoXZ4m7/akg6C36hUPMOo6sRERERKVQKs8XdtowhBo16g9nd2FpERERECpnCbHEWdwoOrHHc1hADERERKYUUZouznQvBboPKrSGkptHViIiIiBQ6hdniym6/vLasemVFRESklFKYLa6O/ArnD4GnH9TtbnQ1IiIiIoZQmC2uMteWrdcDLH7G1iIiIiJiEIXZ4ig5Dv5a4bjdtL+hpYiIiIgYSWG2OPrzC0i/BCG1oFILo6sRERERMYzCbHF05cQvk8nYWkREREQMpDBb3MTsgRO/g5s7NOpldDUiIiIihlKYLW4yd/y66U7wK29sLSIiIiIGU5gtTtJT4Y/FjttN+hlbi4iIiEgRoDBbnPz9LSSdA78KUKOT0dWIiIiIGE5htjjJnPjVuDeY3Y2tRURERKQIUJgtLuJOwoG1jtuNtX2tiIiICBSRMPv+++9TtWpVvLy8aNWqFZs3b87x2GXLltG8eXPKlCmDr68vjRs35tNPPy3Eag2yYyHYbVC5DYTUMLoaERERkSLB8DC7ZMkSRowYwdixY9m2bRuNGjWiS5cuxMTEZHt82bJleemll9i4cSN//PEHgwYNYtCgQaxevbqQKy9ENtvlIQZNNfFLREREJJPJbrfbjSygVatWtGjRgunTpwNgs9mIiIhg2LBhvPDCC7l6jqZNm3L33Xfz6quvZnksJSWFlJQU5/24uDgiIiKIjY0lICAgf95EQYv6BebdA57+MHIfePoaXZGIiIhIgYmLiyMwMDBXec3QntnU1FS2bt1Kp06XZ+a7ubnRqVMnNm7ceN3z7XY769atY9++fbRv3z7bYyZNmkRgYKDzEhERkW/1F5rMXtn69yvIioiIiFzB0DB79uxZrFYroaGhLu2hoaFER0fneF5sbCx+fn54enpy9913M23aNDp37pztsaNHjyY2NtZ5OXbsWL6+hwKXHAu7v3Tc1tqyIiIiIi6K5fpO/v7+7Nixg4SEBNatW8eIESOoXr06t956a5ZjLRYLFoul8IvML39+AemXoFxtqNTc6GpEREREihRDw2xISAhms5nTp0+7tJ8+fZoKFSrkeJ6bmxs1ajhm9Ddu3Jg9e/YwadKkbMNssZe5fW2TvmAyGVuLiIiISBFj6DADT09PmjVrxrp165xtNpuNdevW0bp161w/j81mc5nkVWKc/gtObgM3d2jYy+hqRERERIocw4cZjBgxggEDBtC8eXNatmzJ1KlTSUxMZNCgQQD079+fihUrMmnSJMAxoat58+ZERkaSkpLCN998w6effsqMGTOMfBsFI3PiV627wK+csbWIiIiIFEGGh9mePXty5swZxowZQ3R0NI0bN2bVqlXOSWFHjx7Fze1yB3JiYiJPPfUUx48fx9vbm9q1azN//nx69uxp1FsoGOmpsHOx47YmfomIiIhky/B1ZgtbXtYtM9RfK+DzAeAfBsP/BLPhf3eIiIiIFIpis86sXMP2jIlfjXoryIqIiIjkQGG2KIo9DgcyJsU16WtsLSIiIiJFmMJsUbRjEWCHKm0hONLoakRERESKLIXZosZmgx0Zqxho4peIiIjINSnMFjVH1sOFw+DpD3XvNboaERERkSJNYbaoyVxbtsED4OlrbC0iIiIiRZzCbFFy6SLs/tJxu0l/Q0sRERERKQ4UZouSP5dCejKUqwMVmxpdjYiIiEiRpzBblGQOMWjaD0wmY2sRERERKQYUZouK6D/h5HZw84CGJWxrXhEREZECojBbVGT2yta6C3xDjK1FREREpJhQmC0K0lPgj8WO21pbVkRERCTXFGaLgn3fwKUL4B8ONW43uhoRERGRYkNhtijY9qnjuvEj4GY2thYRERGRYkRh1mgXj8HB7x23m/QxthYRERGRYkZh1mg7FwF2qNoOylY3uhoRERGRYkVh1kg2G2zPGGLQpK+xtYiIiIgUQwqzRjr8C1w8CpYAqHOv0dWIiIiIFDsKs0bK7JWt/wB4+hhbi4iIiEgxpDBrlEsXYPdKx+2mWltWRERE5EYozBpl11KwpkD5uhDe1OhqRERERIolhVmjZG5f26QfmEzG1iIiIiJSTCnMGiF6F5zaAW4e0LCn0dWIiIiIFFsKs0bI3PGrdlfwDTa2FhEREZFiTGG2sKUlwx9LHLeb9De2FhEREZFiTmG2sO37GpIvQkBFiOxodDUiIiIixZrCbGHLnPjV+BFwMxtbi4iIiEgxpzBbmC4ehYM/OG437mNsLSIiIiIlgMJsYdqxCLBD1XZQtprR1YiIiIgUewqzhcVmgx0ZQwyaauKXiIiISH5QmC0sUT85hhlYAqFON6OrERERESkRFGYLS+bErwYPgoe3sbWIiIiIlBAKs4Xh0gXY85XjdpO+xtYiIiIiUoIozBaGXUvBmgKh9SG8idHViIiIiJQYCrOFYdsnjusmfcFkMrYWERERkRJEYbagndoJ0X+A2RMa9jS6GhEREZESpUiE2ffff5+qVavi5eVFq1at2Lx5c47HfvTRR7Rr146goCCCgoLo1KnTNY83XObEr1pdwaessbWIiIiIlDCGh9klS5YwYsQIxo4dy7Zt22jUqBFdunQhJiYm2+N//PFHevfuzQ8//MDGjRuJiIjgjjvu4MSJE4VceS6F3ARlI6FpP6MrERERESlxTHa73W5kAa1ataJFixZMnz4dAJvNRkREBMOGDeOFF1647vlWq5WgoCCmT59O//7X34wgLi6OwMBAYmNjCQgI+Mf154rd7ri4Gf63g4iIiEiRl5e8Zmi6Sk1NZevWrXTq1MnZ5ubmRqdOndi4cWOuniMpKYm0tDTKls3+K/yUlBTi4uJcLoXOZFKQFRERESkAhiass2fPYrVaCQ0NdWkPDQ0lOjo6V88xatQowsPDXQLxlSZNmkRgYKDzEhER8Y/rFhEREZGioVh3F77xxhssXryY5cuX4+Xlle0xo0ePJjY21nk5duxYIVcpIiIiIgXF3cgXDwkJwWw2c/r0aZf206dPU6FChWueO3nyZN544w3Wrl1Lw4YNczzOYrFgsVjypV4RERERKVoM7Zn19PSkWbNmrFu3ztlms9lYt24drVu3zvG8N998k1dffZVVq1bRvHnzwihVRERERIogQ3tmAUaMGMGAAQNo3rw5LVu2ZOrUqSQmJjJo0CAA+vfvT8WKFZk0aRIA//nPfxgzZgwLFy6katWqzrG1fn5++Pn5GfY+RERERKTwGR5me/bsyZkzZxgzZgzR0dE0btyYVatWOSeFHT16FLcrVgKYMWMGqampPPjggy7PM3bsWMaNG1eYpYuIiIiIwQxfZ7awGbLOrIiIiIjkWrFZZ1ZERERE5J9QmBURERGRYkthVkRERESKLcMngBW2zCHChmxrKyIiIiLXlZnTcjO1q9SF2fj4eABtaysiIiJSxMXHxxMYGHjNY0rdagY2m42TJ0/i7++PyWQq8NeLi4sjIiKCY8eOafWEUkQ/99JHP/PSRz/z0kc/88Jjt9uJj48nPDzcZYnW7JS6nlk3NzcqVapU6K8bEBCgX/xSSD/30kc/89JHP/PSRz/zwnG9HtlMmgAmIiIiIsWWwqyIiIiIFFsKswXMYrEwduxYLBaL0aVIIdLPvfTRz7z00c+89NHPvGgqdRPARERERKTkUM+siIiIiBRbCrMiIiIiUmwpzIqIiIhIsaUwKyIiIiLFlsJsAXv//fepWrUqXl5etGrVis2bNxtdkhSQSZMm0aJFC/z9/Slfvjzdu3dn3759RpclheiNN97AZDIxfPhwo0uRAnbixAn69u1LcHAw3t7eNGjQgN9//93osqSAWK1WXnnlFapVq4a3tzeRkZG8+uqraA590aAwW4CWLFnCiBEjGDt2LNu2baNRo0Z06dKFmJgYo0uTAvDTTz/x9NNP89tvv7FmzRrS0tK44447SExMNLo0KQRbtmzhv//9Lw0bNjS6FClgFy5coG3btnh4ePDtt9+ye/du3n77bYKCgowuTQrIf/7zH2bMmMH06dPZs2cP//nPf3jzzTeZNm2a0aUJWpqrQLVq1YoWLVowffp0AGw2GxEREQwbNowXXnjB4OqkoJ05c4by5cvz008/0b59e6PLkQKUkJBA06ZN+eCDD3jttddo3LgxU6dONbosKSAvvPACGzZs4JdffjG6FCkk99xzD6GhocyaNcvZ9sADD+Dt7c38+fMNrExAPbMFJjU1la1bt9KpUydnm5ubG506dWLjxo0GViaFJTY2FoCyZcsaXIkUtKeffpq7777b5b93KblWrlxJ8+bNeeihhyhfvjxNmjTho48+MrosKUBt2rRh3bp1/P333wDs3LmT9evXc9dddxlcmQC4G11ASXX27FmsViuhoaEu7aGhoezdu9egqqSw2Gw2hg8fTtu2balfv77R5UgBWrx4Mdu2bWPLli1GlyKF5NChQ8yYMYMRI0bw4osvsmXLFp555hk8PT0ZMGCA0eVJAXjhhReIi4ujdu3amM1mrFYrr7/+On369DG6NEFhVqRAPP300/z555+sX7/e6FKkAB07doxnn32WNWvW4OXlZXQ5UkhsNhvNmzdn4sSJADRp0oQ///yTmTNnKsyWUJ999hkLFixg4cKF1KtXjx07djB8+HDCw8P1My8CFGYLSEhICGazmdOnT7u0nz59mgoVKhhUlRSGoUOH8r///Y+ff/6ZSpUqGV2OFKCtW7cSExND06ZNnW1Wq5Wff/6Z6dOnk5KSgtlsNrBCKQhhYWHUrVvXpa1OnTp88cUXBlUkBe3555/nhRdeoFevXgA0aNCAI0eOMGnSJIXZIkBjZguIp6cnzZo1Y926dc42m83GunXraN26tYGVSUGx2+0MHTqU5cuX8/3331OtWjWjS5ICdvvtt7Nr1y527NjhvDRv3pw+ffqwY8cOBdkSqm3btlmW3fv777+pUqWKQRVJQUtKSsLNzTUymc1mbDabQRXJldQzW4BGjBjBgAEDaN68OS1btmTq1KkkJiYyaNAgo0uTAvD000+zcOFCvvzyS/z9/YmOjgYgMDAQb29vg6uTguDv759lTLSvry/BwcEaK12C/fvf/6ZNmzZMnDiRhx9+mM2bN/Phhx/y4YcfGl2aFJBu3brx+uuvU7lyZerVq8f27duZMmUKjz76qNGlCVqaq8BNnz6dt956i+joaBo3bsx7771Hq1atjC5LCoDJZMq2fc6cOQwcOLBwixHD3HrrrVqaqxT43//+x+jRo9m/fz/VqlVjxIgRPPbYY0aXJQUkPj6eV155heXLlxMTE0N4eDi9e/dmzJgxeHp6Gl1eqacwKyIiIiLFlsbMioiIiEixpTArIiIiIsWWwqyIiIiIFFsKsyIiIiJSbCnMioiIiEixpTArIiIiIsWWwqyIiIiIFFsKsyIiIiJSbCnMioiUUiaTiRUrVhhdhojIP6IwKyJigIEDB2IymbJc7rzzTqNLExEpVtyNLkBEpLS68847mTNnjkubxWIxqBoRkeJJPbMiIgaxWCxUqFDB5RIUFAQ4hgDMmDGDu+66C29vb6pXr87SpUtdzt+1axe33XYb3t7eBAcH8/jjj5OQkOByzOzZs6lXrx4Wi4WwsDCGDh3q8vjZs2fp0aMHPj4+1KxZk5UrVxbsmxYRyWcKsyIiRdQrr7zCAw88wM6dO+nTpw+9evViz549ACQmJtKlSxeCgoLYsmULn3/+OWvXrnUJqzNmzODpp5/m8ccfZ9euXaxcuZIaNWq4vMb48eN5+OGH+eOPP+jatSt9+vTh/Pnzhfo+RUT+CZPdbrcbXYSISGkzcOBA5s+fj5eXl0v7iy++yIsvvojJZOKJJ55gxowZzsduvvlmmjZtygcffMBHH33EqFGjOHbsGL6+vgB88803dOvWjZMnTxIaGkrFihUZNGgQr732WrY1mEwmXn75ZV599VXAEZD9/Pz49ttvNXZXRIoNjZkVETFIx44dXcIqQNmyZZ23W7du7fJY69at2bFjBwB79uyhUaNGziAL0LZtW2w2G/v27cNkMnHy5Eluv/32a9bQsGFD521fX18CAgKIiYm50bckIlLoFGZFRAzi6+ub5Wv//OLt7Z2r4zw8PFzum0wmbDZbQZQkIlIgNGZWRKSI+u2337Lcr1OnDgB16tRh586dJCYmOh/fsGEDbm5u1KpVC39/f6pWrcq6desKtWYRkcKmnlkREYOkpKQQHR3t0ubu7k5ISAgAn3/+Oc2bN+eWW25hwYIFbN68mVmzZgHQp08fxo4dy4ABAxg3bhxnzpxh2LBh9OvXj9DQUADGjRvHE088Qfny5bnrrruIj49nw4YNDBs2rHDfqIhIAVKYFRExyKpVqwgLC3Npq1WrFnv37gUcKw0sXryYp556irCwMBYtWkTdunUB8PHxYfXq1Tz77LO0aNECHx8fHnjgAaZMmeJ8rgEDBpCcnMw777zDyJEjCQkJ4cEHHyy8NygiUgi0moGISBFkMplYvnw53bt3N7oUEZEiTWNmRURERKTYUpgVERERkWJLY2ZFRIogjQATEckd9cyKiIiISLGlMCsiIiIixZbCrIiIiIgUWwqzIiIiIlJsKcyKiIiISLGlMCsiIiIixZbCrIiIiIgUWwqzIiIiIlJs/T9yElR2Q3NV3AAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["from sklearn.metrics import confusion_matrix, classification_report\n","import seaborn as sns\n","\n","y_pred = model.predict(x_test)\n","y_pred_classes = np.argmax(y_pred, axis=1)\n","y_true = np.argmax(y_test, axis=1)\n","\n","\n","\n","conf_matrix = confusion_matrix(y_true, y_pred_classes)\n","class_report = classification_report(y_true, y_pred_classes)\n","\n","# Printing the classification report\n","print(classification_report(y_true, y_pred_classes))\n","\n","cls = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']\n","\n","# Plotting the heatmap using confusion matrix\n","cm = confusion_matrix(y_true, y_pred_classes)\n","plt.figure(figsize = (8, 5))\n","sns.heatmap(cm, annot = True,  fmt = '.0f', xticklabels = cls, yticklabels = cls)\n","plt.ylabel('Actual')\n","plt.xlabel('Predicted')\n","plt.show()"],"metadata":{"id":"7UiRXEiQWmp1","executionInfo":{"status":"ok","timestamp":1702671593768,"user_tz":300,"elapsed":10636,"user":{"displayName":"TAMARA STUGAN","userId":"09145662160487804942"}},"colab":{"base_uri":"https://localhost:8080/","height":851},"outputId":"fae305d3-0ce7-40ed-841f-bd533a98c75b"},"execution_count":9,"outputs":[{"output_type":"stream","name":"stdout","text":["188/188 [==============================] - 9s 48ms/step\n","              precision    recall  f1-score   support\n","\n","           0       0.85      0.67      0.75       611\n","           1       0.96      1.00      0.98       608\n","           2       0.72      0.62      0.67       574\n","           3       0.59      0.66      0.62       611\n","           4       0.76      0.72      0.74       600\n","           5       0.81      0.53      0.64       612\n","           6       0.77      0.88      0.82       604\n","           7       0.75      0.88      0.81       603\n","           8       0.76      0.94      0.84       592\n","           9       0.88      0.90      0.89       585\n","\n","    accuracy                           0.78      6000\n","   macro avg       0.78      0.78      0.78      6000\n","weighted avg       0.78      0.78      0.78      6000\n","\n"]},{"output_type":"display_data","data":{"text/plain":["<Figure size 800x500 with 2 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAsYAAAIBCAYAAABKhXm5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTK0lEQVR4nOzdd1QU1/vH8fcuvasoYMfee8UWe8OKPcYSu7F3iQ0rauzR2GJs0diixtgVe+8dEVFEBWyANKXu7w++WbMBFHRlgN/zOmfOce/MznxGFvbu3WfuqDQajQYhhBBCCCH+n1MrHUAIIYQQQoj0QDrGQgghhBBCIB1jIYQQQgghAOkYCyGEEEIIAUjHWAghhBBCCEA6xkIIIYQQQgDSMRZCCCGEEAKQjrEQQgghhBCAdIyFEEIIIYQAwFDpAOLrCO3fROkIXyz7urtKR9ALG1MLpSPoRWRMlNIRvlhMXKzSEfQiPhPcsFStUikdQS9UmeQ8KmQrpHSEL+Yb+ULpCHoRGOKp2LFjXj/S276MshfU277SkowYCyGEEEIIRT1//pzvvvsOW1tbzMzMKFOmDFeuXNGu12g0TJ48mZw5c2JmZkbDhg3x9vbW2UdQUBBdu3bF2tqaLFmy0Lt3b8LDw1OVQzrGQgghhBAC4uP0t6RCcHAwNWvWxMjIiAMHDnDv3j3mz59P1qxZtdvMnTuXJUuWsGLFCi5evIiFhQVNmjTh/fv32m26du3K3bt3OXLkCHv37uXUqVP069cvVVlUGk0m+E5OJCKlFOmHlFKkH1JKkX5IKUX6IqUU6YeipRQvvPS2LyP7Yinedvz48Zw9e5bTp08nuV6j0ZArVy5GjRrF6NGjAXj79i329vasW7eOzp074+npScmSJbl8+TKVK1cG4ODBgzRv3pxnz56RK1euFGWREWMhhBBCCKFXUVFRhIaG6ixRUUkPsOzZs4fKlSvToUMH7OzsqFChAqtXr9auf/z4MYGBgTRs2FDbZmNjQ7Vq1Th//jwA58+fJ0uWLNpOMUDDhg1Rq9VcvHgxxbmlYyyEEEIIISA+Xm+Lu7s7NjY2Oou7u3uSh3306BHLly+nSJEiHDp0iIEDBzJ06FDWr18PQGBgIAD29vY6z7O3t9euCwwMxM7OTme9oaEh2bJl026TEjIrhRBCCCGEQKOJ19u+XF1dGTlypE6biYlJktvGx8dTuXJlZs2aBUCFChW4c+cOK1asoEePHnrLlBIyYiyEEEIIIfTKxMQEa2trnSW5jnHOnDkpWbKkTluJEiXw8/MDwMHBAYAXL3TryF+8eKFd5+DgwMuXL3XWx8bGEhQUpN0mJaRjLIQQQggh9FpKkRo1a9bEy0v3wr8HDx6QP39+AAoUKICDgwMeHh7a9aGhoVy8eBEnJycAnJycCAkJ4erVq9ptjh07Rnx8PNWqVUtxFimlEEIIIYQQoMdSitQYMWIENWrUYNasWXTs2JFLly6xatUqVq1aBSTM/jJ8+HBmzJhBkSJFKFCgAJMmTSJXrly0adMGSBhhbtq0KX379mXFihXExMQwePBgOnfunOIZKUA6xkIIIYQQQkFVqlRh165duLq6Mm3aNAoUKMCiRYvo2rWrdpuxY8cSERFBv379CAkJoVatWhw8eBBTU1PtNps2bWLw4ME0aNAAtVpNu3btWLJkSaqyyDzGmZTMY5x+yDzG6YfMY5x+yDzG6YvMY5x+KDmPcfSTa3rbl3H+inrbV1qSEWMhhBBCCKFYKUV68v/u4jtfX19UKhU3btz44n317NlTW9sihBBCCCEytv93HeO8efMSEBBA6dKllY6Srhk36Yj1ykOYdBygbTOq3QzzkXOxWrQT65WHwEy3REBla49ptxFYzlyP1c97sJyxFpOW3cAg/X0xkSuXA+vWLiHA/zZvQx5y7epRKlYsq3SsZPXs3YUTZ/fw6OlVHj29yv4jW2jQsA4AWbLa4D53IuevHMQv8CbX7xxn1pwJWFlbKpw6sZo1q7J9x6889LlIRKQvLVo21lm/cuU8IiJ9dZbdf61XKG3qZLTXVFJq16rG7l3r8PO9Smz0c1q1ynglWZMmjiQ66pnOcvvWCaVjpZqlpQXzfprCgwfnCQn25sTxXVSqVE7pWB+lVqvpN6YXOy/8wQmfQ+w4t4nvh3fT2cbM3IxRM4ex58p2Tvgc4o8T62jbrZVCiRPr0aszx87uxtvvMt5+l9l7+A/qN6wNQN58uQgM8Uxyadk64/2uJEmhWSnSk/TXY/nKDAwMPjqfnUajIS4uDkPD/3f/NVrq/EUxruNM3NNHOu0qY1Ni714h9u4VTF16J36eQ15Qq3n3+2LiX/ljkMsR027DwdiUqD9XJ9peKVmy2HDi+C5OnjxHy1bdeP36DYULFyAk5K3S0ZLl/zyQGW7zeOTzBFQqOn/bhg1/LKN+7baoVCocctoxZeIcHng9JE/e3Mxb6IZDTjt6dR+mdHQdFhbm3L7tyYYN29myZWWS2xw+fIIB/cdoHyd3C9H0JCO+ppJiYWHOrVv3WLtuC39uX6N0nM929+59mjbron0cG5vxastXLP+JUqWK0qvXcAL8X9Dl27Yc2L+Z8hUa4O+f8rt4paVug7rg0qM104a589jLl+LlijFx4TgiwiLYtmYnAMPcfqBSzYq4DZlJwNNAqn5TmTHuI3j94jWnD59T+AzA3z+QmW4LeOTzBJVKRccurVm3eSmN6rTD+8EjyhStrbN9t54d+WFILzyOnlYosX7p8wYfGVWmHDE+ePAgtWrVIkuWLNja2tKiRQt8fHyAxKUUJ06cQKVSceDAASpVqoSJiQlnzpzBzc2N8uXLs3LlSvLmzYu5uTkdO3bk7dvk3+g+dtx/H3vnzp3Uq1cPc3NzypUrp73P9z/OnDlD7dq1MTMzI2/evAwdOpSIiAj9/0clxcQUs97jeLdxEZrIMJ1V0R67iD60jbjH95N8atzdK7xfP584z2toXgcSe+sC0Ud2YFShZlokT7Exo3/g2TN/+vYbxZUrN/D1fcrRo6d49OiJ0tGSdfjgcY4eScj4yMeXWdMXERERSeUq5bnv6c333YZy+OBxfB8/5cypC8yavojGTetjYGCgdHQdhw+fYNrU+fy951Cy20RFRfPixSvtEhISmoYJP09GfE0l5eCh40yeMpe//jqodJQvEhsbp/MaevMmWOlIqWJqakrbts348cdZnDlzEZ9HvsyYsRAfH1/69ev26R0opEzl0pw6dIZzHhcIeBbI8X0nuXTyMiXLl9DZZv/2g1w7f4OAZ4H8tWkvD+891NlGSUcOnsDjyCke/+9v7ewZi4mIiKRilXLEx8fz6uVrnaVZiwbs2X2QyIhIpaMLPcmUHeOIiAhGjhzJlStX8PDwQK1W07ZtW+I/MrQ/fvx4Zs+ejaenJ2XLJnz9+fDhQ7Zt28bff//NwYMHuX79Oj/88MMXH3fChAmMHj2aGzduULRoUbp06aId0fDx8aFp06a0a9eOW7dusXXrVs6cOcPgwYP18D/zaaZdBhN7+xJx96/rZX8qM4tEHWyltWjRiKvXbvHH5hU8e3qDSxcP0qvXt0rHSjG1Wk2bds0xNzfn8qWkf07W1paEhYUTFxeXxum+XO3a1fH1vcL1Gx4sWjyDbNmyKB3pkzL6ayqzKVy4AL6Pr3D//lnWr/uZvHlTPodpemBoaIChoSHv//Ntybv376lRo4pCqT7t9pU7VKlVibwF8wBQuGQhylUtw/ljF3W2qd24JjkcsgNQsUZ58hbMy8WTlxXJ/DFqtZrWLgl/a69eupFofdlyJSlTtiSbN+5I+3Bfi5RSZM5Sinbt2uk8/u2338iRIwf37t3D0jLpustp06bRqFEjnbb379+zYcMGcufODcDPP/+Ms7Mz8+fPT7Ic42PH/XdN8+jRo3F2dgZg6tSplCpViocPH1K8eHHc3d3p2rUrw4cPB6BIkSIsWbKEb775huXLl+vM1/ePqKioRF83R8XFY2KQus89hpW/wSBfYSJmDUnV85KjypEL43qteb8j/ZRRABQokI/+/bqxePFq5sz5mUqVy7NwwTRioqPZ+Hv6/QNXomRRDhzZgompCRHhkfTsOogHXj6JtsuWLSsjx/zAxnVbFUj5ZY4cOclfew7yxPcpBQrmx81tDLt2r6NeXZePfrBVWkZ9TWVGly5fp0+fETx48AiHnHZMnDCCYx47qVCxAeHhafTN2xcKD4/g/PkruLoO4/79h7x48YpOnVpTvVolfHx8lY6XrA1LN2NhZcHWUxuIj4tHbaBmxexfObTrqHab+ROXMH7uKP6+toPYmFji4+NxHzOPGxdvKZhcV/GSRdh3+I+Ev7URkfT6bkiSf2u/7daeB/cfciWJTnOGJaUUmbNj7O3tzeTJk7l48SKvX7/WvqH6+fkluhf3PypXrpyoLV++fNpOMSTcbjA+Ph4vL68kO8YfO+6/O8b/jEhDwv3BAV6+fEnx4sW5efMmt27dYtOmTdptNBoN8fHxPH78mBIlEn/d5O7uztSpU3XaxlcsiGvlwkmea1JUWXNg2mkgkYtcITYmxc9Ldn9ZbLEYOpOYq6eIOXPgi/enT2q1mqtXbzFp8hwAbty8S6lSxejbt1u67sQ89H5MvdptsLK2olXrJvy8Yg6tm3+n8wfb0sqCzdtX8sDLh7nuSxVM+3l27Phb+++7d724c9uTu/dOU6dOdU6cUL7+MDkZ9TWVGR06dFz779t3PLl06ToPvS/Qvn1L1q3bomCy1OnVezgrV87D9/EVYmNjuX79Dlu3/UXFCmWUjpasBq3q0cSlIZMHzeCx12OKlCrMiKmDef3iDfu3J5RPdejlQulKJRndw5XAZy8oX70co2cN5/WLN1w+ffUTR0gbPt6+NKjtgrW1JS1aN2HJcnfaOnfX+VtrampC2w7OLPxpuYJJxdeQKTvGLVu2JH/+/KxevZpcuXIRHx9P6dKliY6OTvY5FhZffhOGlB7XyMhI++9/Jof/pxMdHh5O//79GTp0aKL958uXL8njurq6MnLkSJ22qJHtktw2OQb5CqO2zorFhGUfshkYYFCkDMZ1WxE2qEWKP0mqbLJhPnIusT73eP/74lTlSAsBAS/x9PTWabt/35u2bZorlChlYmJiePzID4BbN+5SvmIZ+g3szujhUwCwsLRg65+/Eh4eQY+ugzLkBUf/5ev7lFev3lCwkGO67hhn1NfU/wdv34bi7f2IwoUclY6SKo8ePaFRow6Ym5thbW1FYOBLft/4C48f+ykdLVlDJg1gw9LNHP3rGAA+9x+TM48D3Yd0Zf/2Q5iYGjNwfB/G9Z7EOY8LADz0fETRUoX5dkCndNMxjomJwfd//8+3bt6jfMUy9BnQjbEj3LTbtGjdBDMzU7b/8ZdCKb+S+IxXfqdvma5j/ObNG7y8vFi9ejW1aydcPXrmzJnP2pefnx/+/v7ae2xfuHABtVpNsWLFvtpxK1asyL179yhcOOWjvSYmJpiYmOi0haayjCL2/g3Cp/bTaTPrMYq4wKdEH9qW8k5xFlvMR84l/ok379fPh3R4h67z569QtGhBnbYiRQri5/dMoUSfR61WY2JsDCSMFG/buYboqGi6dR5IVFTyHwIzkly5HbC1zUpg4Eulo3xUZnlNZUYWFuYULOjIps07lY7yWSIj3xEZ+Y4sWWxo1KgOP06YpXSkZJmamqD5T8lTXFyc9i6HBoaGGBkbJb2NOv3eQVCtVmFiYqzT9m23dhw+cDzDXdj5SVJKkfk6xlmzZsXW1pZVq1aRM2dO/Pz8GD9+/Gfty9TUlB49ejBv3jxCQ0MZOnQoHTt2TLKMQl/HHTduHNWrV2fw4MH06dMHCwsL7t27x5EjR1i69Ct+NR71jnh/3SvoNVHv0USEadtV1llRWWdFnSPhg4JB7gJo3kcSH/QKIsP+1yn+CU3QS97/uRqVlc2HfYWmnz8ei5es5tTJ3YwbO5gdf+6lSuXy9OndlR9+GKd0tGRNnDISjyOnePYsAEtLC9p1aEHNWlXp6NIbSysLtu/6DTMzM37oNwYrK0usrBJq6V+/DkpXtbkWFuYU+tfInWP+vJQtW5KgoBCCg0P48cdh7N59kBcvXlGwYD5mzHTFx8eXo0dOKRc6BTLiayopFhbmFC5cQPu4gGM+ypUrRVBQME+f+iuYLOVmz57Ivn1H8fN7Rs6c9kyePIq4uDi2bt2tdLRUadTwG1QqFQ+8fShUyBH3WRPw8vJh/fptSkdL1pkj5+k5tBuBz1/y2MuXoqUL06V/R/Zu2Q9AZHgk187dYPCkgUS9jybgWSAVncrTrH0Tlkxd9om9p40fJ4/g2NHTPH/mj4WlBS7tW1CjVlU6u/TVbuNYIB/Va1Sma4f+CiYVX0um6xir1Wq2bNnC0KFDKV26NMWKFWPJkiXUrVs31fsqXLgwLi4uNG/enKCgIFq0aMEvv/zyVY9btmxZTp48yYQJE6hduzYajYZChQrRqVOnVOfXN+M6zgk37PgfizHzAXi3bh4x549gWKIiBva5wT43VnM26zw3tH/6mfz86tWbdOjYhxnTXZkwYTi+vk8ZNdqNP7bsUjpasrLnsGXpijnYO9gRGhrGvbtedHTpzcnj56hRqyqVq5QH4PKNozrPq1imPk/9niuQOGkVK5bl4KEPdZ5z5k4C4PeNOxg2bAKlS5ega9d22GSxJiDgJR4ep5g+bcFHy6DSg4z4mkpK5Url8Dj6oSZ6/jw3ANZv2EbvPiMUSpU6eXLnZOOGpdjaZuXVqyDOnbtE7TqteP06SOloqWJtY8WM6ePJnduBoKAQdu8+wOQpc9N1idT8iYvpN7Y3Y9yHk9U2K69fvGb3xr9Zs/DDTXomDpzGDz/2xW3pBKyzWBP4/AUr5/zKzg17FEz+QfYctvy8YjZ29jkICw3j3t0HdHbpy6l/lXJ1+c4F/+eBnDh2VsGkX0k6GkhRikqjSYffdacDbm5u7N69Wy+3jlZCeuqIfq7s6+4qHUEvbEy/vH49PYiMSf832viUmLj026lIjfhM8Gf7n6/XMzpVJjmPCtkKKR3hi/lGvlA6gl4EhngqduyoO0f0ti+T0o0+vVE6lCnnMRZCCCGEECK1Ml0phRBCCCGE+AxSSiEjxslxc3PLsGUUQgghhBCppdHE6W3JqKRjLIQQQgghBFJKIYQQQgghQOYxRjrGQgghhBACpMYYKaUQQgghhBACkBFjIYQQQggBUkqBdIyFEEIIIQRAfMadTUJfpJRCCCGEEEIIZMRYCCGEEEKAlFIgHWMhhBBCCAEyKwVSSiGEEEIIIQQgI8ZCCCGEEAKklALpGGda2dbeUTrCF3vnf1rpCHphlqu20hGESHfiNRqlI+hHJjmPK6+9lY4g0gMppZBSCiGEEEIIIUBGjIUQQgghBMiIMdIxFkIIIYQQgEYjN/iQUgohhBBCCCGQEWMhhBBCCAFSSoF0jIUQQgghBMh0bUgphRBCCCGEEICMGAshhBBCCJBSCqRjLIQQQgghQEopkFIKIYQQQgghABkxFkIIIYQQIKUUSMdYCCGEEEKAlFIgpRR6tW7dOrJkyfLRbdzc3Chfvrz2cc+ePWnTps1XzSWEEEIIIT4tQ3eMU9IRTW9Gjx6Nh4eH0jG+yMABPXj44ALhoT6cO/M3VSqXVzqSjhevXjNu6lxqNutIpXqtadttIHc8H2jXazQalq7eQN1W31KpXmv6DHPlydPn2vWXrt2idM1mSS63Pb2UOKUk1a5Vjd271uHne5XY6Oe0atVE6UifLb2/plIiM5wDyHmkJ5nhHCBznEdmOIcUiY/X35JBZeiOcUZkaWmJra2t0jE+W4cOrZj30xSmz1hAlWpNuXnrHvv3bSJHjvRxTm9Dw+g2YBRGhoasmD+dvzatZPTgPlhbWWq3+W3Tdjbt2MPkMUPYvHoRZqam9B85kaioaAAqlCnBiT2bdJZ2LZuSJ5cDpYsXVerUErGwMOfWrXsMGTZB6ShfJL2/plIiM5wDyHmkJ5nhHCBznEdmOIcUk46xsh3jgwcPUqtWLbJkyYKtrS0tWrTAx8cHgBMnTqBSqQgJCdFuf+PGDVQqFb6+vpw4cYLvv/+et2/folKpUKlUuLm5ARAcHEz37t3JmjUr5ubmNGvWDG9vb+1+/hlp3rt3L8WKFcPc3Jz27dsTGRnJ+vXrcXR0JGvWrAwdOpS4uDjt8z6133/s3r2bIkWKYGpqSpMmTXj69Kl23X9LKf4rPj4ed3d3ChQogJmZGeXKlWPHjh2f+T+sfyOG9eXXNZtZv2Ebnp7e/DBoPJGR7/i+Z2elowEJnV4HuxzMmDCSMiWLkSeXAzWrVSJfnlxAwmjxxm276dejM/VrO1GscAFmTRrNy9dv8Dh9DgAjIyOy22bTLjY21hw/fZ42zRuhUqmUPD0dBw8dZ/KUufz110Glo3yR9P6aSonMcA4g55GeZIZzgMxxHpnhHETKKdoxjoiIYOTIkVy5cgUPDw/UajVt27YlPgWfNGrUqMGiRYuwtrYmICCAgIAARo8eDSTU7V65coU9e/Zw/vx5NBoNzZs3JyYmRvv8yMhIlixZwpYtWzh48CAnTpygbdu27N+/n/3797Nx40ZWrlyp0ylN6X5nzpzJhg0bOHv2LCEhIXTunPJfHnd3dzZs2MCKFSu4e/cuI0aM4LvvvuPkyZMp3sfXYmRkRMWKZfE4dlrbptFo8Dh2hurVKymY7IPjZy5QqngRRk6cSR3nzrTvOYgdew5o1z/zD+T1m2CcKlfQtllZWlC2ZDFu3rmf5D5PnL5ASGgYbZwbffX8/99khNfUp2SGcwA5j/QkM5wDZI7zyAznkCqaeP0tGZSis1K0a9dO5/Fvv/1Gjhw5uHfv3iefa2xsjI2NDSqVCgcHB227t7c3e/bs4ezZs9SoUQOATZs2kTdvXnbv3k2HDh0AiImJYfny5RQqVAiA9u3bs3HjRl68eIGlpSUlS5akXr16HD9+nE6dOqVqv0uXLqVatWoArF+/nhIlSnDp0iWqVq360XOKiopi1qxZHD16FCcnJwAKFizImTNnWLlyJd98802yz4uKitJp02g0eh/dzJ49G4aGhrx88Vqn/eXLVxQvVkivx/pcz/wD2bp7H907udC3eyfueD7AfeEKjAwNad28Ea+DggGwzZZV53m22bLy+k1wkvvcufcQNatWxMEux1fP//9NRnhNfUpmOAeQ80hPMsM5QOY4j8xwDqmSgUsg9EXREWNvb2+6dOlCwYIFsba2xtHREQA/P7/P3qenpyeGhobajimAra0txYoVw9PTU9tmbm6u7RQD2Nvb4+joiKWlpU7by5cvU7VfQ0NDqlSpon1cvHhxsmTJorNNch4+fEhkZCSNGjXC0tJSu2zYsEFbYpIUd3d3bGxsdBZNfNgnj5cZxcdrKFG0MMMH9KRE0cJ0aN2cdq2asm33/s/aX+DLV5y9dA2XFhn3wjYhhBBCpIyiI8YtW7Ykf/78rF69mly5chEfH0/p0qWJjo7WdlA1Go12+3+XLHwpIyMjnccqlSrJtpSUdehLeHg4APv27SN37tw660xMTJJ9nqurKyNHjtRpy2pbXO/5Xr8OIjY2Fjv77DrtdnY5CHzxSu/H+xw5bLNRyDGfTltBx7wcPXEWgOz/Gyl+ExRMjuzZtNu8CQqmWJHEn/537ztCFmsr6tau/hVT//+VEV5Tn5IZzgHkPNKTzHAOkDnOIzOcQ6pk4BIIfVFsxPjNmzd4eXkxceJEGjRoQIkSJQgO/vBVdo4cCV9bBwQEaNtu3Lihsw9jY2Odi+MASpQoQWxsLBcvXkx0rJIlS3523pTuNzY2litXrmgfe3l5ERISQokSJT55jJIlS2JiYoKfnx+FCxfWWfLmzZvs80xMTLC2ttZZvsZFYjExMVy7dov69Wpp21QqFfXr1eLChat6P97nqFC2JL5+z3Tanvg9J6eDHQB5cjmQ3TYrF67e0K4Pj4jg1j0vypXW/TCh0WjYvf8ILZs1wMhQ7oXzNWSE19SnZIZzADmP9CQznANkjvPIDOeQKjIrhXIjxlmzZsXW1pZVq1aRM2dO/Pz8GD9+vHb9P51BNzc3Zs6cyYMHD5g/f77OPhwdHQkPD8fDw4Ny5cphbm5OkSJFaN26NX379mXlypVYWVkxfvx4cufOTevWrT87b0r3a2RkxJAhQ1iyZAmGhoYMHjyY6tWrf7K+GMDKyorRo0czYsQI4uPjqVWrFm/fvuXs2bNYW1vTo0ePz86vLwsXr2btmoVcvXaLy5evM3RIXywszFi3fqvS0QDo1qkN3fqPYtX6LTRtUIfb97zYsecAU8YOBRL+oHXr2IZV67eQP09ucueyZ+nqjdhlt6VB7Ro6+7p49QbP/ANp17KpEqfySRYW5hQuXED7uIBjPsqVK0VQUDBPn/ormCx10vtrKiUywzmAnEd6khnOATLHeWSGcxApp1jHWK1Ws2XLFoYOHUrp0qUpVqwYS5YsoW7dukBCB/OPP/5g4MCBlC1blipVqjBjxgztRW6QMDPFgAED6NSpE2/evGHKlCm4ubmxdu1ahg0bRosWLYiOjqZOnTrs378/UalEaqVkv+bm5owbN45vv/2W58+fU7t2bdasWZPiY0yfPp0cOXLg7u7Oo0ePyJIlCxUrVuTHH3/8ouz6sn37HnJkz4bb5NE4OOTg5s27OLf4jpcvX3/6yWmgTIliLHKfxOIV61ixbjO5czowblh/WjSpr92mV9cOvHv3Hre5SwgLD6di2VKsmD8dExNjnX3t3HuY8mVKUjB/8qP1SqpcqRweRz/MmjJ/nhsA6zdso3efEQqlSr30/ppKicxwDiDnkZ5khnOAzHEemeEcUkxKKVBp/l3EKzINQ+Pcn94onXvnf/rTG2UAZrlqKx1BCCFEBhEb/fzTG30l73bM0Nu+zNpP1Nu+0pLc+U4IIYQQQijGzc1Ne7O2f5bixT9c9/P+/XsGDRqEra0tlpaWtGvXjhcvXujsw8/PD2dnZ8zNzbGzs2PMmDHExsamOotcUSSEEEIIIRS9aK5UqVIcPXpU+9jwXxe9jxgxgn379rF9+3ZsbGwYPHgwLi4unD2bMONUXFwczs7OODg4cO7cOQICAujevTtGRkbMmjUrVTmkYyyEEEIIIUDB6lpDQ0OdG7b94+3bt6xZs4bNmzdTv37C9UJr166lRIkSXLhwgerVq3P48GHu3bvH0aNHsbe3p3z58kyfPp1x48bh5uaGsbFxov0mR0ophBBCCCGEXkVFRREaGqqz/Pcuvf/m7e1Nrly5KFiwIF27dtXe7O3q1avExMTQsGFD7bbFixcnX758nD9/HoDz589TpkwZ7O3ttds0adKE0NBQ7t69m6rc0jEWQgghhBB6ncc4qbvyuru7J3nYatWqsW7dOg4ePMjy5ct5/PgxtWvXJiwsjMDAQIyNjcmSJYvOc+zt7QkMDAQgMDBQp1P8z/p/1qWGlFIIIYQQQgi91hi7uk5MdFfe5O7i26xZM+2/y5YtS7Vq1cifPz/btm3DzMxMb5lSQkaMhRBCCCGEXiV1V97kOsb/lSVLFooWLcrDhw9xcHAgOjqakJAQnW1evHihrUl2cHBINEvFP4+Tqlv+GOkYCyGEEEKIhBt86Gv5AuHh4fj4+JAzZ04qVaqEkZERHh4e2vVeXl74+fnh5OQEgJOTE7dv3+bly5fabY4cOYK1tTUlS5ZM1bGllEIIIYQQQig2Xdvo0aNp2bIl+fPnx9/fnylTpmBgYECXLl2wsbGhd+/ejBw5kmzZsmFtbc2QIUNwcnKievXqADRu3JiSJUvSrVs35s6dS2BgIBMnTmTQoEEpHqX+h3SMhRBCCCGEYp49e0aXLl148+YNOXLkoFatWly4cIEcOXIAsHDhQtRqNe3atSMqKoomTZrwyy+/aJ9vYGDA3r17GThwIE5OTlhYWNCjRw+mTZuW6ixyS+hMSm4JnX7ILaGFEEKklKK3hF4/Xm/7MusxW2/7SksyYiyEEEIIIRS98116IRffCSGEEEIIgYwYZ1q2ZlZKR/himaUEwa9yUaUj6EWFuwFKR/hiJgZGSkfQi1fvQpWO8MWymFgoHUEvouJilI6gF9FxsUpH+GJRsdFKR8j4ZMRYOsZCCCGEEIIvnmYtM5BSCiGEEEIIIZARYyGEEEIIAWjiZaIy6RgLIYQQQgipMUZKKYQQQgghhABkxFgIIYQQQoBcfId0jIUQQgghBIDUGEsphRBCCCGEECAjxkIIIYQQAuTiO6RjLIQQQgghQDrGSCmFEEIIIYQQgIwYCyGEEEIIAI1cfCcjxnpSt25dhg8fnux6R0dHFi1alOr9urm5Ub58+c/OJYQQQgiRIvHx+lsyKOkYp5HLly/Tr18/pWOkSo/enTl+9i8ePr3Cw6dX2HdkC/Ub1k5y2807VvHi7X2aOTdI45SpV7tWNXbvWoef71Vio5/TqlUTpSMlYt62FTk2/IrDkb04HNlL9lVLMaleVbvedulCcp07rrPYjBmhXW/WvEmi9f8s6qxZFDijBJ96Te3cu4EXb+/rLHMXuimWNyV+GNYbv6DbTJk1FoA8eXPhF3Q7ycW5dWOF035Qs2ZVduxYw6NHl3j37gktW37IZmhoyIwZ47l8+RCvX3vy6NElfv11ATlz2imYOLHuvTrhcXYXD/wu8cDvEn8f3qzzesrvmJfffl/CnYdneOB3iZVrF5A9h62CiZM2fFR/jp74kyf+1/F6dIGNf/xC4SIFdLaxs8vO8lU/4fnwHE8Db3L89G5aprO/XTVrVmXbjl/x9rlAeORjWrRspLPewsKc+Qum4uV9jldvPLly9TC9+3yrUNqU69+vO9euHuHN6/u8eX2f06f20KRJPaVjia9ESinSSI4cOT66PiYmBiMjozRKkzIBz18ww20+j3yeoFKp6PRtG9b/sYyGtV3wuv9Qu13/H3qgyUBfv1hYmHPr1j3WrtvCn9vXKB0nSXEvXxG6fDWxT5+BSoV58yZkmzODVz37EfvYF4CIv/YStvo37XM076O0/3539DhRFy7p7DPLxPGojI2JDw5Ji1NIUkpeUxvXbWPOzCXa57x7906puJ9UtkIpvu3Znnt3vLRt/s8DqVS8rs523/boQP/BPTl+9HQaJ0yehYU5t297smHDNrZuXaWzztzcjPLlSzN79hJu3fIka1Yb5s2bwvbta6hVq6VCiRML8H/BTLeFPPZ5gkoFHbu0Ye3mpTSq046nfs/Zsms19+540b7V9wCMmzCUDVuW4dywS7r6m1WzZlXWrN7E9au3MDA0ZJLbKP7cvRanKs2IjEx4/S9f9RPWNlZ07TSAN2+Cad+hJb9tWEz9Oi7cvnVP4TNIYG5hxp3bnmzcsI0/tqxMtH72nInU+caJPr1G8OTJMxo0rMPCRdMICHjJ/n1HFUicMs+eB/DjBHcePnyMSqWiW7cO7PzzN6pUbcK9ew+UjqdfMo+xdIz1KTY2lsGDB7Nx40aMjIwYOHAg06ZNQ6VS4ejoyPDhw7XlFiqVil9++YUDBw7g4eHBmDFjcHNzY/bs2SxcuJDIyEg6duz4yQ7113T44HGdx+7TF9Gjd2cqVSmn7cSUKlOcAYO/p3Hd9tzxPqNEzFQ7eOg4Bw8d//SGCoo6e17ncdjKNVi0bYVxqZLajrHm/Xvig4KT3kF0NPFB0dqH6iw2mFSqQIj7T18rcoqk5DX1LvIdr16+ViJeqphbmLFk5WzGD5/KkFEfvg2Kj4/n1cs3Ots2ca7P3r8OERmRfjr5hw+f4PDhE0muCw0No0WL73TaRoyYzJkzf5M3by6ePvVPg4SfduTgCZ3Hs2cspnvvzlSqUpacOe3Imy83jeq0IzwsAoChA12573uBWnWqc/rk+ST2qIwOLr11Hg8aMA7vxxcpV6E0589eBqBKtQqMHjGFa1dvATD/p18YOLgn5SuUSjcd4yOHT3Lk8Mlk11erVpHNm3Zy+vRFANb+9ge9enehcuVy6bpjvG/fEZ3HkyfPoX+/blSrWjHzdYzlzndSSqFP69evx9DQkEuXLrF48WIWLFjAr7/+muz2bm5utG3bltu3b9OrVy+2bduGm5sbs2bN4sqVK+TMmZNffvklDc8geWq1mjbtmmNubs6VSzcAMDMzZfmv83AdPS1DdGQyLLUa04b1UJmaEn3nrrbZrHFD7PfvJsfvv2E1oA8qE5Nkd2HWrDGa91G8O5b8m1ZaS+o1BeDSsSX3Hp3n5Pk9TJgyEjMzU+VCfsSMuRM4duQ0Z05e+Oh2ZcqVpHTZEmz9fWcaJfs6rK2tiI+PJyQkVOkoSVKr1bR2aYa5uRlXL93E2MQYjUZDdNSHD4hR76OIj4+nqlNFBZN+mrW1JQAhQSHatssXr9O2nTNZstqgUqlwaeeMiYkJZ/7XycwILl68RnPnBuTMZQ9AnTrVKVy4AB7p6JuUT1Gr1XTs2AoLC3MuXLyqdBzxFciIsR7lzZuXhQsXolKpKFasGLdv32bhwoX07ds3ye2//fZbvv/+e+3jzp0707t3b3r3Thg9mDFjBkePHuX9+/cfPW5UVBRRUVE6bRpNPCrVl3/uKVGyKPuO/IGJqQkR4ZF833UwD7x8AJjm7sqVS9c5uP/YFx9HJGZYsADZVy1DZWyM5t07glwnE+v7BIB3RzyIC3xB3KvXGBUuhPUP/TDMl5fgH6ckuS/zFs15d8QDoqOTXJ+WPvaa2rVjL0+f+vMi4CUlSxVl4tTRFCriSK/vhiqcWldLl6aULleSlg06f3LbTt+1xdvLh6uXbqZBsq/DxMSEGTNc2bZtD2Fh4UrH0VG8ZBH2Hv4DE1NjIiIi6fXdUB54+fDmdRCREe+YOHUU7tMWgUrFBLeRGBoaYm+v3Ddxn6JSqZg1ZyIXzl/B09Nb2/59j6H8tm4xj/yuEBMTw7vI93T/dhCPH/kpmDZ1Ro104+els/B+eIGYmBji4+MZPOhHzp699MnnKq106eKcPrUHU1MTwsMjaN+hj87PJ9OQUgrpGOtT9erVUalU2sdOTk7Mnz+fuLi4JLevXLmyzmNPT08GDBig0+bk5MTx4x//2t/d3Z2pU6fqtJkb22Jpmj018ZP00Psx9Wu3xdraipatm7BkxWzaNu9GgYL5qFWnGg1qu3zxMUTSYv2e8qpHH9SWlpjWq0OWieN5M2g4sb5PiPxr74ftHj0m7s0bsv+8gNDcuYh7rvs1t1HpkhgVcCRkmntan0KSkntNPfDyYeO6bdrtPO894MWLV/z593ryF8jLk8dPFUz9Qc7c9rjNGk9Xl35ERX38g4aJqQmt2zdnybzE9ZYZhaGhIb//vgyVSsXQoROUjpOIj7cvDWu7YG1tSYvWTViyfBYuzj144OVDv54jmL1gMr37f0d8fDy7/9zPrRt3iU/HV8z/tMCNEiWK0LxxF532HycOx8bGmjYtuvPmTTDOLRry2/rFNG/SBc8M8nX+gIE9qFK1Ah3a98HP7zm1alVlwcKpBAS84MTxs0rH+ygvLx8qV2mMjbUVLu2c+W3NIho0bJfpOseadPy7kVakY6wgCwsLvezH1dWVkSNH6rQVzlM5ma1TJyYmBt//jUjcunGX8hVL03dgd96/e49jgXx4++l+0l+zcQkXzl3FpUV3vRz//7XYWOKe+xMHxHg9wLhEcSw6tuPt3AWJNo256wmAYZ7ciTrG5i2diXngTYxX+njzTO41NWZ44tHua1cS6ikLFMyfbjrGZcqVIoedLftPbNW2GRoaUq1GJXr06UJhh0rajpdzq0aYmZnx55a/lYr7RQwNDdm0aRn58uWmWbMu6W60GP73enr8v9fTzXuUq1iaPgO6MXaEGyePn8OpQlOyZctCbFwcoW/DuOl1iie+BxROnbQ58ybTpGk9nJt+i79/oLbdsUA++g3oTo0qzbj/v1r8u3fuU71GZfr0+45RwycrFTnFTE1NcJs6mi6dB3Dof9ca3L1znzJlSzJseN903zGOiYnBx8cXgGvXb1O5UnmGDO7DD4PGKRtM6J10jPXo4kXdWq8LFy5QpEgRDAwMUvT8EiVKcPHiRbp3/9CpvHDh4/WLkPA1p8l/6kv1UUaRFLVajbGxMXNn/cymDTt01p288DeTXWdz+KCUVnwVahWqZGYuMSpSGIC417oXfanMTDGrX5fQFau/erzP9c9rKimlyhQH4GXgy7SM9FFnT12gYc22Om3zf56Oj/djflnym85oZKfvXDh68DhBb5K5SDId+6dTXKhQAZo27UzQv+pd0zO1WoWxie7vyT/Za9apRvYc2Th8IP39jZozbzLOLRvRqvl3+D15prPunzr7+P/MpBEfF49arSIjMDIywtjYONFofXxcHOqv9H71NanVakxMkv67laFJKYV0jPXJz8+PkSNH0r9/f65du8bPP//M/PnzU/z8YcOG0bNnTypXrkzNmjXZtGkTd+/epWDBgl8xdfImTBmJx5FTPH8WgKWlBS4dWlCjVlU6ufTh1cvXSV5w9/yZP35PniuQNuUsLMwpXPjDHKEFHPNRrlwpgoKC083V9lYD+hB14RJxgS9QmZtj1rgBxhXKEzRiLAa5c2HWqAFR5y8S//YthoULYTPsB6Ku3yTW55HOfswa1EdlaMC7Q0eSOVLa+thrKn+BvLi0b4HHkVMEB4VQslRRprm7cu7MZe7dTR+j3QAR4ZE88Hyo0xYZ+Y7g4BCd9vwF8iaMInf6Ia0jpoiFhTmFCjlqHzs65qVs2ZIEB4cQEPCSzZuXU6FCaVxcemFgYKCtyw0KCiEmJkah1Lp+nDyCY0dP8eyf11P7hNdTF5eE6zo6dU2o737zOpjKVcszbbYrq37ZgM9DX2WD/8dPC9xo36ElXTsPJDwsAju7hDK40NAw3r+PwvvBI3we+rJg8XQmT5hNUFAIzi0aUrd+TTp3SD/z41tYmFOwUH7t4/z581KmbAmCg97y7Jk/p09dYOZMV96/e59QSlG7Gl2+dcF1/AwFU3/ajBnjOXjwOE+fPsfKypLOndvwzTdONHdO/3Mwp5rMSiEdY33q3r077969o2rVqhgYGDBs2LBU3dSjU6dO+Pj4MHbsWN6/f0+7du0YOHAghw4d+oqpk5c9RzZ+XjEHe4cchIWGce+uF51c+nDq+DlF8uhL5Url8Dj6YbR7/jw3ANZv2EbvPiOSeVbaUmfNSpZJrhjYZiM+IoLYh48IGjGWqMtXUdvlwKRKJSw7tUNlakbcy5e8P36asHUbE+3HvGUz3p04jSY8QoGzSOxjr6lcuR2oU7cG/X7ogbm5Gf7PA9i75zALf1qudOzP0qlrWwL8X3DqWPr8falYsSyHD38oB5k7N+Hr+I0btzNjxiLtDT8uXTqo87zGjTtx+vSnv8lKC7Y5srFkxWzs7P95PT2gi0tfTp1ImIqtUGFHfpw8gixZbXjq95wl81eyctl6hVMn1rtvVwD2Htyk0z5owDj+2LST2NhYOrXvw5SpY9i8bSUWFuY8fvSEH/qP5ehHpkdLaxUrluHAoS3ax3PmTgLg9407GNB/DD16DGHqtLGsWbuIrFmz8NTvOVPd5vHr6k3J7TJdsMuRnbW/LSZnTjvevg3j9m1Pmjt/i4dHxplNQ6ScSpOeZjkXemNvU1zpCF/szbswpSPohV/lokpH0IsKdwOUjvDFTAzS1010Pterd+lzyrTUyGKin2sslBYVlz5Gz79UdFys0hG+WFSs8rPu6ENMtHLfukZM66q3fVlMTt8feJIjI8ZCCCGEEAJkVgq5wYcQQgghhBAgI8ZCCCGEEAJkVgqkYyyEEEIIIUBmpUBKKYQQQgghhABkxFgIIYQQQoCUUiAjxkIIIYQQQgAyYiyEEEIIIQCNTNcmHWMhhBBCCIGUUiClFEIIIYQQQgAyYiyEEEIIIUBGjJGOsRBCCCGEAJnHGCmlEEIIIYQQApARYyGEEEIIAVJKgXSMM62gd2FKR/hiKqUD6EnZO8+VjqAXPm3zKh3hizn++UTpCHpha2aldIQvps4kv+Ex8bFKR9ALDRm/Q2RoIF2aL6WRjrGUUgghhBBCCAEyYiyEEEIIIUBKKZCOsRBCCCGEAJA730kphRBCCCGEECAjxkIIIYQQAqSUAukYCyGEEEIIkI4xUkohhBBCCCEEICPGQgghhBAC0GhkxFg6xkIIIYQQQkopkFIKIYQQQgghABkxFkIIIYQQICPGyIixEEIIIYQANPEavS2fa/bs2ahUKoYPH65te//+PYMGDcLW1hZLS0vatWvHixcvdJ7n5+eHs7Mz5ubm2NnZMWbMGGJjY1N9fOkYCyGEEEIIxV2+fJmVK1dStmxZnfYRI0bw999/s337dk6ePIm/vz8uLi7a9XFxcTg7OxMdHc25c+dYv34969atY/LkyanOIB3jdMzNzY3y5csrHUOrf7/uXLt6hDev7/Pm9X1On9pDkyb1lI6VahnxPL7v3YWT5/bw+Nk1Hj+7xoGjW2nQqI52vYmJMXPmT+GB70V8/a+zduPP5Mhhq2DixEycO2Oz3gPTb3/40GhkhGm3oVgt24X1yr2YD56CyjqrdrU6b0HMBk7AasEfWK/ej6X7bxg3ckli72lnxKgBeJzciV/ADR48vsjvfyyncJECibarUrUCf+3byLMXt3jif4N9hzZjamqiQOKUGTSsN8+C7uA2a1yS6zduW86zoDs0aV4/jZOl3A/DeuMXdJsps8YCkCdvLvyCbie5OLdurHDaD4aN7M+RE3/i+/wanj7n2bD5FwoX1n1NORbIy/pNy7j/6AKPn13j13WL0t3veM2aVdm+41ce+lwkItKXFi11/49XrpxHRKSvzrL7r/UKpU1ezZpV2bFjDY8eXeLduye0/Nd5GBoaMmPGeC5fPsTr1548enSJX39dQM6cdgom1qN4jf6WVAoPD6dr166sXr2arFk/vA+8ffuWNWvWsGDBAurXr0+lSpVYu3Yt586d48KFCwAcPnyYe/fu8fvvv1O+fHmaNWvG9OnTWbZsGdHR0anKIR1jkWLPngfw4wR3qlVvRnWn5hw/cZadf/5GyZJFlY6WKhnxPPyfBzLdbT4NvmlLw7ounD55gY1//EKx4oUBmOH+I02a1qN392G0bv4dDjntWLdpqcKpPzAoUAzjei2I8/PRaTf99geMKlQnculUwt1HoMqaHfOhbh+e51gUTWgIkSvdCfuxN1F/b8a0Q2+MG7ZO4zP4oEatqvy66nca1++AS8seGBkZsvOvdZibm2m3qVK1Ajt2/cZxjzM0rNuOBt+0ZfXK34lPp/V75SqUpmvPDty745Xk+j4Du6X7aZzKVijFtz3b65yD//NAKhWvq7PMd19GeFgEx4+eVjCtrhq1qrBm1e80adCR9q2/x8jIkO27f9O+pszNzdi+ey0ajYa2LbrTvHFnjI2N2bRtJSqVSuH0H1hYmHP7ticjRiQ/Snf48AkKFqiiXXr2GJKGCVPmn/MYPnxSonXm5maUL1+a2bOX4OTkTOfO/SlatCDbt69RIOlXEK+/JSoqitDQUJ0lKioq2UMPGjQIZ2dnGjZsqNN+9epVYmJidNqLFy9Ovnz5OH/+PADnz5+nTJky2Nvba7dp0qQJoaGh3L17N1X/BXLx3VcWHx/PvHnzWLVqFU+fPsXe3p7+/fszYcIExo0bx65du3j27BkODg507dqVyZMnY2RkxLp165g6dSqA9g/f2rVr6dmzp2Lnsm/fEZ3HkyfPoX+/blSrWpF79x4olCr1MuJ5HDp4XOfxrOkL+b5PFypXKY+/fyBdu7enf+9RnD6V8Ol5yEBXLlw9SKUq5bh6+aYSkT8wMcVswI9E/rYA01ZdP7SbWWBcpxmRy2cR53kDgHe/zsVq9joMCpUgzseTmNMHifnXrmJeBWBQqCRGlWoTffSvND2Nf3Ro20vn8Q8DxvHQ9xLlK5Tm3NnLAMycPYGVK9azaMFK7XYPvR+nac6UMrcw4+eVsxk73I1ho/onWl+ydDH6D+pB8/qduH7/pAIJP83cwowlK2czfvhUhozqp22Pj4/n1cs3Ots2ca7P3r8OERnxLq1jJquTSx+dx4MHjMPr8UXKlS/F+XNXqFq9Ivny5aZerdaEh0UAMGjAWHz8rlD7GydOnTinROxEDh8+weHDJz66TVRUNC9evEqbQJ/pY+cRGhpGixbf6bSNGDGZM2f+Jm/eXDx96p8GCTMGd3d3bT/mH1OmTMHNzS3Rtlu2bOHatWtcvnw50brAwECMjY3JkiWLTru9vT2BgYHabf7dKf5n/T/rUkNGjL8yV1dXZs+ezaRJk7h37x6bN2/W/rCsrKxYt24d9+7dY/HixaxevZqFCxcC0KlTJ0aNGkWpUqUICAggICCATp06KXkqOtRqNR07tsLCwpwLF68qHeezZcTzUKvVtG2XcIHB5UvXKV++NMbGxpz815vjQ+9HPPV7TpWqFRRMmsCs+zBib14g7t41nXYDxyKoDI2Ivffh/z0+4Cnxr19gULhksvtTmVugiQj7anlTy9raCoDg4BAAsufIRpWq5Xn16g2Hjm7D69EF9h7cTHWnSgqmTN7MuRPxOHKKMycvJFpnambK0tVzmTBmZqIOZnoyY+4Ejh05neQ5/FuZciUpXbYEW3/fmUbJPo+1zT+vqbcAmBgbo9FoiI768JVw1Pso4uPj0+3rKjm1a1fH1/cK1294sGjxDLJly6J0pC9mbW1FfHw8ISGhSkf5Yvq8+M7V1ZW3b9/qLK6uromO+fTpU4YNG8amTZswNTVV4Kx1yYjxVxQWFsbixYtZunQpPXr0AKBQoULUqlULgIkTJ2q3dXR0ZPTo0WzZsoWxY8diZmaGpaUlhoaGODg4fPQ4UVFRib6e0Gg0X+UrttKli3P61B5MTU0ID4+gfYc+eHp66/04X1tGPI8SJYty4OhWTE1NiAiPpEfXQTzw8qFM2RJERUUT+la3s/jq1Rvs7LIrlDaBUbV6GOQvTPjUHxKtU9tkQxMTDZEROu3xocGobbIluT+DwiUxqlqXyIU/fpW8qaVSqXCfM4EL567geS/h9ePomA+A8a5DmTRhNrdvedL527bs3ruRGlWb8cjniZKRdbRyaUaZciVwbtA5yfVuM8dy9dINDh84nuT69KClS1NKlytJy2TO4d86fdcWby8frl5S+FuUj1CpVMycPYEL569y/39/k65cvkFkxDsmTxvDzKkLUKlUTJo6GkNDQ+ztcyicOOWOHDnJX3sO8sT3KQUK5sfNbQy7dq+jXl0X4uPjlY73WUxMTJgxw5Vt2/YQFhaudJwvp8dyLxMTE0xMPn1dxdWrV3n58iUVK1bUtsXFxXHq1CmWLl3KoUOHiI6OJiQkRGfU+MWLF9r+kYODA5cuXdLZ7z+zVnyqD/Vf0jH+ijw9PYmKiqJBgwZJrt+6dStLlizBx8eH8PBwYmNjsba2TvVxkvq6QqW2xMAg9fv6FC8vHypXaYyNtRUu7Zz5bc0iGjRsl+47lf+VEc/jofdj6tVqjbW1FS1bN2Xpijm0atb1009UiCpbDky7DiLip7EQE/PpJ3yCOrcj5sOmE/XXBmLvpI/R/XkL3ShRsijNGn3olKnVCR9I1/22hc2//wnA7Vv3+KauE99168A0t3mKZP2vnLkdmDprPN+69CUqKvHFKY2a1qVm7Wo0qdtegXQpkzO3PW6zxtPVpV+S5/BvJqYmtG7fnCXzVn50O6XNnT+F4iWK4Nyki7btzZtgevUYyk8Lp9JvQHfi4+PZuWMfN6/fyVAdyh07/tb+++5dL+7c9uTuvdPUqVOdE+mkHCQ1DA0N+f33ZahUKoYOnaB0nAyrQYMG3L59W6ft+++/p3jx4owbN468efNiZGSEh4cH7dq1A8DLyws/Pz+cnJwAcHJyYubMmbx8+RI7u4QLIY8cOYK1tTUlSyb/DWRSpGP8FZmZmSW77vz583Tt2pWpU6fSpEkTbGxs2LJlC/Pnz0/1cVxdXRk5cqROWzbb4qneT0rExMTg4+MLwLXrt6lcqTxDBvfhh0FJX8meXmXE84iJieHxIz8Abt64S4WKZeg/sAe7d+7HxMQYaxsrnVHjHDlsefnytVJxMXAsitomK5ZTV2jbVAYGGBQri3HDNkTMG4fKyBjMLXRGjdXWWYl5G6SzL3Wu/FiMm0f0iX1E7dmUZufwMXPnT6FJ0/o0b9IFf/8PNWyBgQn1k173H+ps7+XlQ568OdM048eULVeSHHa2HDixTdtmaGhItRqV6NmnCxt/20r+Anm59/i8zvNWrV/IpfPX6NDq+7SOnEiZcqXIYWfL/hNbtW3/nEOPPl0o7FBJ23F0btUIMzMz/tzyd3K7U9zseZNp3LQeLZt1JcBfd47WE8fOUqVcQ7Jly0psXCyhb8O4632WJ38+VSjtl/P1fcqrV28oWMgxw3WMDQ0N2bRpGfny5aZZsy6ZY7QYEi6cS2NWVlaULl1ap83CwgJbW1tte+/evRk5ciTZsmXD2tqaIUOG4OTkRPXq1QFo3LgxJUuWpFu3bsydO5fAwEAmTpzIoEGDUjRq/W/SMf6KihQpgpmZGR4eHvTpo3txxblz58ifPz8TJnz4lPnkie5XrMbGxsTFxX3yOEl9XZFWVyqr1WpMTIzT5FhfU0Y8D7VahbGJMTdu3CE6Opo63zixd89hAAoXLkDefLm5fOm6Yvli710j7MfeOm1mfcYQH/CUqH1biA96hSY2BsOSFYm9kjBDgNohD+rs9sQ9vKd9jjp3fizGzSfmzGGi/vwtTc8hOXPnT8G5ZSNaNuuK35NnOuv8njzD3z+QwkV1p9sqXLgARw+nn4vXzpy6QIOabXTa5v88Ax/vx/yyZA1Bb4L5ff12nfUeZ3czdcJcjhw8kXZBP+LsqQs0rNlWp23+z9P/dw6/6YymdvrOhaMHjxP0JjitY6bI7HmTcW7RiNbO3yV6Tf1bUFBC/tp1qpMjhy0H9x9Lq4h6lyu3A7a2WQkMfKl0lFT5p1NcqFABmjbtTFBQiNKR9OZLbszxNS1cuBC1Wk27du2IioqiSZMm/PLLL9r1BgYG7N27l4EDB+Lk5ISFhQU9evRg2rRpqT6WdIy/IlNTU8aNG8fYsWMxNjamZs2avHr1irt371KkSBH8/PzYsmULVapUYd++fezatUvn+Y6Ojjx+/JgbN26QJ08erKysUv3JR59mzBjPwYPHefr0OVZWlnTu3IZvvnGiufO3imX6HBnxPCZOGYXHkZM8exaApaUF7Tq0pGbtanRo24uw0HA2bdjB9FmuhAS/JSwsHPefJnHp4jVlZ6R4/4745766bVHv0YSHatujTx3ArMtAIsPD0LyPwOy7IcR63yXOxxNIKJ+wGD+P2NtXiDq0HZXN/+a2jI9HE/Y27c7lX+YtnEr7Di35tvMAwsMitHXcoaFhvH+fUOv/86JfcZ0wjDu373P7lidduralSNGC9PhusCKZkxIRHomXp+6o9rvIdwQHh2jbk7rg7vmzAJ76PU+TjJ8SER7Jg/+cQ+T/zuHf7fkL5E0YRe6UuNY9PZi7YArt2rekW5eByb6munR14cEDH968DqJK1QrMnDOBFcvW8fBh+pntxMLCnEKFHLWPHfPnpWzZkgQFhRAcHMKPPw5j9+6DvHjxioIF8zFjpis+Pr4cPXJKudBJSHQejgnnERwcQkDASzZvXk6FCqVxcemFgYGBts47KCiEGD2UjQk4ceKEzmNTU1OWLVvGsmXLkn1O/vz52b9//xcfWzrGX9mkSZMwNDRk8uTJ+Pv7kzNnTgYMGEDv3r0ZMWIEgwcPJioqCmdnZyZNmqQzjUm7du3YuXMn9erVIyQkRPHp2uxyZGftb4vJmdOOt2/DuH3bk+bO3+LhkX7mA02JjHge2XNkY9nKudg72BEaGsa9O150aNuLk8cTvn6c6DqLeI2Gtb//jLGxMcc9zjB2pJuimVPi/eZfIF6D+ZApqIyMiL19hXcbFmvXG1Wpg9o6K8Y1G2Fcs5G2Pf5VIGGjlamv7t034bj7Dm7Waf+h/1j+2JQw28GKX9ZhamrCrNkTyJLVhru37+PSqge+j/3SPK+ATl3bEuD/glPH0ufX9b36JLym9hzQLRMaPGAcWzYnDJgULlKQiW6jyJrVhqd+z1n40wqWL1ub5lk/pmLFshw8tEX7eM7chHmAf9+4g2HDJlC6dAm6dm2HTRZrAgJe4uFxiunTFqT6BgxfW8WKZTl8+EN5zty5CfMyb9y4nRkzFmlv+HHp0kGd5zVu3InTpz8+M0q6l3FK1r8alSa9z9ouPouRcW6lI4j/sTG1UDqCXvi0zat0hC/m+Gf6mRHiS1gYKz+l0ZdSk35uTPElImOTv2FBRvIuNn11Tj9HfCbpzrx7p9zfqaC23+htX9l2pZ/SsdSQeYyFEEIIIYRASimEEEIIIQRIKQXSMRZCCCGEEIBGOsZSSiGEEEIIIQTIiLEQQgghhAAppUA6xkIIIYQQAimlACmlEEIIIYQQApARYyGEEEIIAVJKgXSMhRBCCCEEUkoBUkohhBBCCCEEICPGQgghhBACGTEG6RgLIYQQQgikYwxSSiGEEEIIIQQgI8aZlkqlUjrCF4vXaJSOoBeZ4WcBUGjXU6UjfLGng8oqHUEvsi26pHSEL2ZrZq10BL0wNTRWOoJeRMREKR3hi8XExSodIePTZI73qy8hHWMhhBBCCCGlFEgphRBCCCGEEICMGAshhBBCCEATL6UU0jEWQgghhBBSSoGUUgghhBBCCAHIiLEQQgghhAA0MiuFdIyFEEIIIYSUUoCUUgghhBBCCAHIiLEQQgghhEBmpQDpGAshhBBCCCCT3HD2i0gphRBCCCGEEMiIsRBCCCGEQEopQEaM9apu3boMHz5c6RhCCCGEEKmmiVfpbcmopGMsUmzSxJFERz3TWW7fOqF0rFSrXasau3etw8/3KrHRz2nVqonSkT6pZ+8unDi7h0dPr/Lo6VX2H9lCg4Z1tOu79ezI7r0bePT0Kq/eemFtY6Vg2uR937sLJ8/t4fGzazx+do0DR7fSoNGH8zAxMWbO/Ck88L2Ir/911m78mRw5bBVMnJhR3bZYztmJccte2jYTlwGYj/0Fixl/YDFpLabdx6PKkVu7Xp3TEZMuIzB3XYXFjD8wH7UEo5rOSsRPVkb8/e7eqxMeZ3fxwO8SD/wu8ffhzdRvWFu7Podddn5eOZubXqfweX6Fwyd34NyqkYKJU2bQsN48C7qD26xx2rbte9byLOiOzuI+f7KCKROrWbMqO3as4dGjS7x794SWLRtr1xkaGjJjxnguXz7E69eePHp0iV9/XUDOnHYKJk6ZjPieIT6flFJkINHR0RgbGyua4e7d+zRt1kX7ODY2VsE0n8fCwpxbt+6xdt0W/ty+Ruk4KeL/PJAZbvN45PMEVCo6f9uGDX8so37ttnjdf4i5mRnHPE5zzOM0k9xGKx03Wf7PA5nuNp9HPr6oVCo6dWnLxj9+oV6tNnjdf8gM9x9p1KQuvbsPIzQ0jNnzJrNu01KcG3f59M7TgDpPYYyqNSbO31enPe6ZDzHXT6EJeYXKzArjRp0w6zOZyNkDQROPOndBNOFveb9lEZq3bzDIXwwTl4EQH0/M+QPKnEwSMtrvd4D/C2a6LeSxzxNUKujYpQ1rNy+lUZ12PLj/kJ9XuGNtY0WPLoMIehOMSwdnVq5dQNN6Hblzy1Pp+EkqV6E0XXt24N4dr0TrNq3fzjz3pdrH7969T8ton2RhYc7t255s2LCNrVtX6awzNzejfPnSzJ69hFu3PMma1YZ586awffsaatVqqVDilMmI7xmfSy6+k47xZ4uIiGDgwIHs3LkTKysrRo/W7YxERUUxYcIE/vjjD0JCQihdujRz5syhbt262m3OnDmDq6srV65cIXv27LRt2xZ3d3csLCwAcHR0pHfv3nh7e7N7925cXFxYt25dGp5lYrGxcbx48UrRDF/q4KHjHDx0XOkYqXL4oG7eWdMX0bN3FypXKY/X/YesXL4egBq1qioRL8UOJTqPhXzfJ+E8/P0D6dq9Pf17j+L0qQsADBnoyoWrB6lUpRxXL99UIvIHxqaYdh5O1J/LMa7fXmdV7KUj2n9rgl8RfWgz5iMWosqaA03QC2KvHNPdPugF6nzFMChdPV11jDPa7/eRgyd0Hs+esZjuvTtTqUpZHtx/SOWqFRg/aio3rt0GYNG8lfT9oQdly5VMlx1jcwszfl45m7HD3Rg2qn+i9e/evefVyzcKJEuZw4dPcPjwiSTXhYaG0aLFdzptI0ZM5syZv8mbNxdPn/qnQcLPkxHfMz5XRi6B0BcppfhMY8aM4eTJk/z1118cPnyYEydOcO3aNe36wYMHc/78ebZs2cKtW7fo0KEDTZs2xdvbGwAfHx+aNm1Ku3btuHXrFlu3buXMmTMMHjxY5zjz5s2jXLlyXL9+nUmTJqXpOSalcOEC+D6+wv37Z1m/7mfy5s2ldKT/d9RqNW3aNcfc3JzLl64rHeezqdVq2rZz1p5H+fKlMTY25uSJc9ptHno/4qnfc6pUraBg0gQmbfoSe/8qcQ9vfXxDIxMMK9cn/k0gmrfJd2JUpubwLlzPKb9MRv79VqvVtHZphrm5GVcvJXyIunLpOq3aNiNLFhtUKhWtXZphamLMuTOXFU6btJlzJ+Jx5BRnTl5Icn3b9s7c8j7N0bO7GD9pOKZmpmmcUL+sra2Ij48nJCRU6ShCaMmI8WcIDw9nzZo1/P777zRo0ACA9evXkydPHgD8/PxYu3Ytfn5+5MqV8MYyevRoDh48yNq1a5k1axbu7u507dpVe7FekSJFWLJkCd988w3Lly/H1DThD179+vUZNWrUR/NERUURFRWl06bRaFCp9PvJ79Ll6/TpM4IHDx7hkNOOiRNGcMxjJxUqNiA8PEKvxxKJlShZlANHtmBiakJEeCQ9uw7igZeP0rFSrUTJohw4uhXT/51Hj/+dR5myJYiKiib0bZjO9q9evcHOLrtCaRMYlquJOldB3i0dm/w21Zti0rwbKhMz4l8+492vUyEu6VIEdf5iGJaryfu1M79W5FTLqL/fxUsWYe/hPzAxNSYiIpJe3w3V/l70+34kK3+bj6fveWJiYngX+Z5e3w3F97GfwqkTa+XSjDLlSuDcoHOS63f/uY9nT/15EfCKEqWK8qPbCAoVdqRvj+FpG1RPTExMmDHDlW3b9hAWlr4+IP5/ptHIiLF0jD+Dj48P0dHRVKtWTduWLVs2ihUrBsDt27eJi4ujaNGiOs+LiorC1jbhQqKbN29y69YtNm3apF2v0WiIj4/n8ePHlChRAoDKlSt/Mo+7uztTp07VaVOrrTAwtP68E0zGoX99lXT7jieXLl3nofcF2rdvybp1W/R6LJHYQ+/H1KvdBitrK1q1bsLPK+bQuvl3Ga5z/ND7MfVqtcba2oqWrZuydMUcWjXrqnSsZKlsbDFu2Zv3v06F2Jhkt4u9cYo475uorLNiXKc1pl1H8275j4meo7bPh1n38UQf3Uact8LlIf+SUX+/fbx9aVjbBWtrS1q0bsKS5bNwce7BAy8fxk4YirWNNR1a9SIoKJimzg1YuW4BbZp14/49b6Wja+XM7cDUWeP51qUvUVHRSW6zaf0O7b/ve3rz4sUrtv31G/kd8/LE92laRdULQ0NDfv99GSqViqFDJygdR/yLJl7pBMpLUcd4z549Kd5hq1atPjtMZhEeHo6BgQFXr17FwMBAZ52lpaV2m/79+zN06NBEz8+XL5/23//UG3+Mq6srI0eO1GmzzV7ic6Knytu3oXh7P6JwIcevfiwBMTExPH6UMNJ168ZdylcsQ7+B3Rk9fIrCyVLn3+dx88ZdKlQsQ/+BPdi9cz8mJsZY21jpjBrnyGHLy5evlYqLOnch1FZZMBs6T9umMjBAXaAkRk7NiJjQKeHd5H0kmveRaN4E8N7vARZuGzAsVY3Ym2c+PM8uD6Z93Yi5dISYYzuSOly6kVF+v2NiYrQjwLdu3qNcxdL0GdCNZYvX0LtfV76p3ooH9x8CcO+OF9WcKvF9n28ZN3Lqx3abpsqWK0kOO1sOnNimbTM0NKRajUr07NOFgg4ViY/X7bFcv5pQN+1YMGN1jA0NDdm0aRn58uWmWbMuMlos0p0UdYzbtGmTop2pVCri4uK+JE+GUKhQIYyMjLh48aK2ExscHMyDBw/45ptvqFChAnFxcbx8+ZLatWsnuY+KFSty7949Chcu/MV5TExMMDEx0WnTdxlFUiwszClY0JFNm3d+9WOJxNRqNSYKz1KiD2q1CmMTY27cuEN0dDR1vnFi757DQELNa958uRWtpY57eIvIBcN12kw6DCb+1TNiTuz+yBCLCgyNtI/U9nkx7TuV2KvHiT60+avl1ZeM+vud8Hoywsw8oRxN858OZXxcHGp1+vq6+MypCzSo2Uanbf7PM/DxfswvS9Yk6hQDlCpTHICXgcp9aEytfzrFhQoVoGnTzgQFhSgdSfxHvJRSpKxjnNQv5f9nlpaW9O7dmzFjxmBra4udnR0TJkxArU64lrFo0aJ07dqV7t27M3/+fCpUqMCrV6/w8PCgbNmyODs7M27cOKpXr87gwYPp06cPFhYW3Lt3jyNHjrB06dJPJFDG7NkT2bfvKH5+z8iZ057Jk0cRFxfH1q27lY6WKhYW5hQuXED7uIBjPsqVK0VQUHC6vTJ64pSReBw5xbNnAVhaWtCuQwtq1qpKR5feANjZZcfOPjsFCyZ8UCtZsijh4RE8exZASPBbJaPrmDhlFB5HTv7rPFpSs3Y1OrTtRVhoOJs27GD6LFdCgt8SFhaO+0+TuHTxmrIzUkS/J/6FX6I2TWQ48S/8UGWzx7BsTeK8b6CJCE0ovajrAjHRxN1PuCBXbZ8P035TiXtwnZjTf6OyzAKARhMPEenjwqOM+Pv94+QRHDv64ffCpX0LatSqSheXvjx88JhHPk+Yu8iNqRN/IjgohKYtGlCnXg26dfpB6eg6IsIj8fJ8qNP2LvIdwcEheHk+JL9jXtq0b86xI6cJDgqhRKmiTJk5jgtnL+N574FCqROzsDCn0L++YXB0zEvZsiUJDg4hIOAlmzcvp0KF0ri49MLAwAB7+xwABAWFEBOTfJmS0jLie8bnkhpjqTH+bD/99BPh4eG0bNkSKysrRo0axdu3Hzoga9euZcaMGYwaNYrnz5+TPXt2qlevTosWLQAoW7YsJ0+eZMKECdSuXRuNRkOhQoXo1KmTUqf0SXly52TjhqXY2mbl1asgzp27RO06rXj9OkjpaKlSuVI5PI5++Bp7/jw3ANZv2EbvPiMUSvVx2XPYsnTFHOwd7AgNDePeXS86uvTm5PGEGRx69OrMWNch2u3/PpgwIjlk4Hi2bN6lSOakZM+RjWUr5344jztedGjbS3seE11nEa/RsPb3nzE2Nua4xxnGjnRTNPMnxURjUKAERrVaoDKzQBP+lrjH94j8xRVNRMLfBMMyTqgtbVBXrItRxbrap8YHvSRyzgCFguvKiL/ftjmysWTFbOzscxAWGsa9uw/o4tKXUyfOA/BdhwFMcBvBhi3LsLAw5/FjP4YNdOXYkVMKJ0+d6JgYan9TnT4DumFmbkbA80AO/H2ExfNXKh1NR8WKZTl8eKv28dy5CTcg2bhxOzNmLNLe8OPSpYM6z2vcuBOnTyc9E0d6kBHfM8TnU2k0qZ/OOSIigpMnT+Ln50d0tO6FAknVzIq0Z2ySR+kIXyw+k8w0ntXMUukIevEZfyrSHd+BpZWOoBfZFl1SOsIXszXT78XBSjFQZ45ZT9+8C/v0RulcTDKzwGQ0sdHPFTv2/aLN9bav4g/2621faSnVI8bXr1+nefPmREZGEhERQbZs2Xj9+jXm5ubY2dlJx1gIIYQQIgPKBOMfXyzVH3VHjBhBy5YtCQ4OxszMjAsXLvDkyRMqVarEvHnzPr0DIYQQQggh0qFUd4xv3LjBqFGjUKvVGBgYEBUVRd68eZk7dy4//vjj18gohBBCCCG+Mk28Sm9LRpXqjrGRkZF29gU7Ozv8/BKu1raxseHp04wzl6IQQgghhPggXqPS25JRpbrGuEKFCly+fJkiRYrwzTffMHnyZF6/fs3GjRspXTpzXNgihBBCCCH+/0n1iPGsWbPImTMnADNnziRr1qwMHDiQV69esWrVKr0HFEIIIYQQX59Go9LbklGlesS4cuXK2n/b2dlx8ODBj2wthBBCCCEyApmV4jNGjIUQQgghhMiMUj1iXKBAAVSq5IfIHz169EWBhBBCCCFE2svIF83pS6o7xsOHD9d5HBMTw/Xr1zl48CBjxozRVy4hhBBCCJGGMnJtsL6kumM8bNiwJNuXLVvGlStXvjiQEEIIIYQQStBbjXGzZs34888/9bU7IYQQQgiRhjQa/S0Zld46xjt27CBbtmz62p0QQgghhEhDSt3gY/ny5ZQtWxZra2usra1xcnLiwIED2vXv379n0KBB2NraYmlpSbt27Xjx4oXOPvz8/HB2dsbc3Bw7OzvGjBlDbGxsqv8PPusGH/+++E6j0RAYGMirV6/45ZdfUh1ACCGEEEL8/5UnTx5mz55NkSJF0Gg0rF+/ntatW3P9+nVKlSrFiBEj2LdvH9u3b8fGxobBgwfj4uLC2bNnAYiLi8PZ2RkHBwfOnTtHQEAA3bt3x8jIiFmzZqUqi0qjSd2At5ubm07HWK1WkyNHDurWrUvx4sVTdXDx9Rib5FE6wheLz8jfxfyLhbGp0hH0ok328kpH+GJ/v7mldAS9OJeziNIRvljV5/eVjqAX2c1slI6gF8/CXikd4YtllveM2Ojnih37cu62ettXlee7vuj52bJl46effqJ9+/bkyJGDzZs30759ewDu379PiRIlOH/+PNWrV+fAgQO0aNECf39/7O3tAVixYgXjxo3j1atXGBsbp/i4qR4xdnNzS+1ThBBCCCFEOqfP6dqioqKIiorSaTMxMcHExOSjz4uLi2P79u1ERETg5OTE1atXiYmJoWHDhtptihcvTr58+bQd4/Pnz1OmTBltpxigSZMmDBw4kLt371KhQoUU5051jbGBgQEvX75M1P7mzRsMDAxSuzshhBBCCJHJuLu7Y2Njo7O4u7snu/3t27extLTExMSEAQMGsGvXLkqWLElgYCDGxsZkyZJFZ3t7e3sCAwMBCAwM1OkU/7P+n3WpkeoR4+QqL6KiolI1VC2EEEIIIdIPfRajuLq6MnLkSJ22j40WFytWjBs3bvD27Vt27NhBjx49OHnypB4TpUyKO8ZLliwBQKVS8euvv2JpaaldFxcXx6lTp6TGWAghhBAig9JnKUVKyib+zdjYmMKFCwNQqVIlLl++zOLFi+nUqRPR0dGEhITojBq/ePECBwcHABwcHLh06ZLO/v6ZteKfbVIqxR3jhQsXAgkjxitWrNApmzA2NsbR0ZEVK1ak6uBCCCGEEEL8V3x8PFFRUVSqVAkjIyM8PDxo164dAF5eXvj5+eHk5ASAk5MTM2fO5OXLl9jZ2QFw5MgRrK2tKVmyZKqOm+KO8ePHjwGoV68eO3fuJGvWrKk6kBBCCCGESL+UuiW0q6srzZo1I1++fISFhbF582ZOnDjBoUOHsLGxoXfv3owcOZJs2bJhbW3NkCFDcHJyonr16gA0btyYkiVL0q1bN+bOnUtgYCATJ05k0KBBqRq1hs+oMT5+/HhqnyKEEEIIIdK5eIWO+/LlS7p3705AQAA2NjaULVuWQ4cO0ahRIyChakGtVtOuXTuioqJo0qSJzr0zDAwM2Lt3LwMHDsTJyQkLCwt69OjBtGnTUp0l1fMYt2vXjqpVqzJu3Did9rlz53L58mW2b9+e6hBC/2Qe4/RD5jFOP2Qe4/RD5jFOX2Qe4/RDyXmMTzu019u+agfu0Nu+0lKqp2s7deoUzZs3T9TerFkzTp06pZdQQgghhBAibWlQ6W3JqFJdShEeHp7ktGxGRkaEhobqJZQQQgghhEhb8Zlj0P2LpHrEuEyZMmzdujVR+5YtW1J95Z8QQgghhBDpRapHjCdNmoSLiws+Pj7Ur18fAA8PDzZv3syOHRmznkQIIYQQ4v+7+AxcAqEvqe4Yt2zZkt27dzNr1ix27NiBmZkZ5cqV49ixY2TLlu1rZMzw6tatS/ny5Vm0aJHSUYQQQgghkpSRa4P1JdWlFADOzs6cPXuWiIgIHj16RMeOHRk9ejTlypXTdz6RjjzwOk901LNEy+LFM5SO9lkGDujBwwcXCA/14dyZv6lSubzSkZI1ctQAjp/cxbOAmzx8fIlNf6ygcJECOtssWjKDG7eOEfjqLj6+l9i8ZQVFihZUKHGCYlVLMvxXVxZdXM163z+p2Lhqstv2mNmP9b5/0riXs057/lIFGLNxMr/c2sCy6+v4ftYATMyVm+lj+Kj+HD3xJ0/8r+P16AIb//hF52eRN19ugsK8k1xat2mqSOYsXZrjuGcZRa7toMi1HeTfOh+LOpUBUNtYYj9pAAUOrqLorV0UOrEOu4n9UVuaJ9qPTduGOO5ZRtHbuyl8fjP2U35I61PRMXL0QE6c2s3zwFva1/x/fy96ft+ZfQc28yzgJqERj7CxsVIobfKGje3Po9fXdZYj53dq18+YP4Hjl/dw7+l5Lt8/xsqNCylY2FG5wCk0aeLIRO8Xt2+dUDpWqtWuVY3du9bh53uV2OjntGrVROlI4iv6rI4xJMxO0aNHD3LlysX8+fOpX78+Fy5c0Gc2kc7UqOlM3nwVtEvTZp0B+PPPfQonS70OHVox76cpTJ+xgCrVmnLz1j3279tEjhy2SkdLUs1a1Vi96nca1m9Pm5bdMTIyZNdf6zE3N9Nuc+P6HX4YOI6qlRrj0vp7VCoVu/5aj1r92b/mX8zE3ISnnr5snLz6o9tValKVQhWKEhz4Rqc9i11Wxm6awssngUxrM555PaaTu2he+s4b/DVjf1TNmlVZs3oTTep3wKVVT4yMjPhz91rtz+L5swCKF3LSWdxnLCYsLJyjR5SZuSc28DWv5q/Ft+1QfF2GEXHhJnl+mYRx4XwY2tliaGfLqzm/8th5IAHjF2JZuzIOs4br7CPr923JPrI7Qau287j5AJ72/JGI01cVOZ9/1KpVlVWrNtKgXjtat+yOkZERu/ds0Pm9MDc34+jRU8yft1zBpJ/m5fmQqiUbapeOzr206+7c9GTsUDca1XChZ8cfUKlUbNjxi6K/2yl19+59nfeNuvXaKh0p1SwszLl16x5Dhk1QOspXF6/HJaNKVSlFYGAg69atY82aNYSGhtKxY0eioqLYvXu3XHj3PxEREQwcOJCdO3diZWXF6NGjddYHBwczbNgw/v77b6Kiovjmm29YsmQJRYp8mJd09erVTJs2jTdv3tCkSRNq167NtGnTCAkJSeOz0fX6dZDO4zFjBvHQx5dTp84rlOjzjRjWl1/XbGb9hm0A/DBoPM2bNeD7np2Z+9MyhdMl1q7t9zqPBw4YyyPfy5SvUJpzZy8DsG7tFu16P7/nzJi2gHMX95M/fx4eP/ZL07z/uHXiOrdOXP/oNlnts/GdWx/mdZ/OiLU/6qwr36AycTFxbJi0mn+mXF83YSUzDy3ELr8DL58EfrXsyeng0lvn8aAB4/B+fJFyFUpz/uxl4uPjefnytc42zi0b8deuA0RERKZlVK3w45d0Hr9euIGsXZwxK1+ctzsO83zITO26mKeBvFq4npzzxoCBGuLiUVtbkmN4N54NmErk+ZvabaO8fNPqFJLk0kb392JA/zE8fnJF5/fil2VrAahVu1qa50uNuNg4Xr98k+S6LRs+jB4/fxrAglnL2H9qG3ny5cLP91laRfwssbFxvHiRsedIPnjoOAcP/f+4uZmUUqRixLhly5YUK1aMW7dusWjRIvz9/fn555+/ZrYMacyYMZw8eZK//vqLw4cPc+LECa5du6Zd37NnT65cucKePXs4f/48Go2G5s2bExMTA8DZs2cZMGAAw4YN48aNGzRq1IiZM2cmdzjFGBkZ8W0XF9av2/LpjdMZIyMjKlYsi8ex09o2jUaDx7EzVK9eScFkKWdjnfB1cHDw2yTXm5ub0bVbe3wf+/HsWUBaRksVlUpFv4VD2b/qL557P0203tDYkNiYWP59H6Lo99EAFK1SIs1yfoy1tSUAIUEhSa4vV74UZcuV5PcN6eTmR2o1Vs51UJmb8u66Z9KbWFkQHx4JcQnjPhY1K4BajaG9LQUOrKDQqQ3kWuSKoUP2tEz+SZ/6vUjPHAvm4/ydw5y48jcLV8wkV26HJLczMzel/bet8PN9RsDztP9gmFqFCxfA9/EV7t8/y/p1P5M3by6lIwnxUSkeMT5w4ABDhw5l4MCBOqOb4oPw8HDWrFnD77//ToMGDQBYv349efIk3IXO29ubPXv2cPbsWWrUqAHApk2byJs3L7t376ZDhw78/PPPNGvWTDvSXLRoUc6dO8fevXuTPW5UVBRRUVE6bRqNBpXq633ya92qCVmyWLNhYzp5s0+F7NmzYWhoyMsXuqN6L1++onixQgqlSjmVSoX7nImcP3cFz3sPdNb16duVqdPHYWlpwYMHPrRp1UP7oSs9ch7YhvjYOI6sTbocx/PcHbpM7Emzfq05vHYfJmYmdBz3HQBZ7LKkYdKkqVQqZs2ZyIXzV/D09E5ym++6d8Dr/kMuXfz4yPnXZlLUkfxb56MyMSY+8h3PB00n2ifxhxGDrNZk/6ELIVsPaNuM8jqgUqmwHdCJlzNWEhcWQY4R3cm7biaPWw6CmNi0PJUkqVQqZs+dlOTvRXp34+odxgyZzOOHT8hhn52hY/qzde9vNK3dnojwhG8Zvvu+A+OmDMfC0hwf78d0bz+QmHTw//4xly5fp0+fETx48AiHnHZMnDCCYx47qVCxAeHhEUrHE0nIyCUQ+pLiEeMzZ84QFhZGpUqVqFatGkuXLuX169effuL/Iz4+PkRHR1Ot2oev7LJly0axYsUA8PT0xNDQUGe9ra0txYoVw9MzYeTGy8uLqlV1L1D67+P/cnd3x8bGRmeJjwvT12klqef3nTl06DgBAS++6nFEYvMXTqVEyaL06jks0bptW/+ids1WNGvSmYfej1m34WdMTBLfkCc9cCxdkEbfO7N69NJkt3nu/ZTVo36mad+WrPbczJLLa3j19CUhr4KJTwcz0f+0wI0SJYrQp+eIJNebmprQvkPLdDFaHPX4GY9bD8a3wwhC/thPzjmjMC6UV2cbtYUZeVZNJcrHj9c/b9K2q9QqVMZGvJi+gogz13h/0wv/EXMwzp8Li2pl0/pUkjR/4TRKlCzK9z2GKh0l1U56nOXAnqPcv+fN6ePn6dV5MNY2lji3bqzd5q8dB2hZvwudWvbmsY8fP6+Zg3E6/d3+x6FDx/lz5z5u3/HkyJGTtGrdnSxZrGnfvqXS0UQypMY4FSPG1atXp3r16ixatIitW7fy22+/MXLkSOLj4zly5Ah58+bFyir9Xe37/4GrqysjR47UabPN/vW+Zs6XLzcN6temY6e+X+0YX9Pr10HExsZiZ6/7NbCdXQ4C03kt3E/zp9CkaX2aN+mMv3/ir1FDQ8MJDQ3nkY8vly/d4Mmza7Ro1YQ/t/+tQNqPK1q1BNa2Niw4t1LbZmBoQJcJPWjcqwWjaw0E4MKeM1zYcwbr7DZERUah0Who2qcFr/yU/VA2Z95kmjSth3PTb5P8WQC0atMUM3NTtvyxO23DJSUmlhi/hLKaV3cfYlqmCFl7tObF5IQPJmoLM/KsmU58RCTPf5gOsXHap8a+DAYg+uGHWvW44FDigkMxzJUjDU8iafPmu9G0WT2aNU769yKjCQsN57GPH/kLfPjgEhYWTlhYOL6P/Lhx5RbXH56iiXN9/t55UMGkqfP2bSje3o8oXMhR6ShCJCvVl7RaWFjQq1cvzpw5w+3btxk1ahSzZ8/Gzs6OVq1afY2MGUahQoUwMjLi4sWL2rbg4GAePEj4Wq9EiRLExsbqrH/z5g1eXl7aixeLFSvG5cuXdfb738f/ZWJigrW1tc7yNcsoenTvxMuXr9m/3+OrHeNriomJ4dq1W9SvV0vbplKpqF+vFhcuKHuV/cf8NH8KLVo2pqXzdzx58ukLblQqFSqVCpMkbuGeHpzdeZKJTUcyqfko7RIc+Ib9q/Ywr/v0RNuHvn5LVOR7qrWoSUxUDHfP3Exir2ljzrzJOLdsROsW3fD7yM/iu+4dOLj/GG/+c+FquqBSozY2AhI6xXl/mwExsTwbMA1NtG75TeS1ewAYF8yjbVPbWGKQ1ZqY5y/TLnMS5s13o0WrxrRsnrLfi4zA3MKMfI55EpV7/SPhdxuM//fzyygsLMwpWNCRgEBlXzMieRpUelsyqlTf4OPfihUrxty5c3F3d+fvv//mt99+01euDMnS0pLevXszZswYbG1tsbOzY8KECdopdYoUKULr1q3p27cvK1euxMrKivHjx5M7d25at24NwJAhQ6hTpw4LFiygZcuWHDt2jAMHDnzVjm5qqFQqunfvyO+/7yAuLu7TT0inFi5ezdo1C7l67RaXL19n6JC+WFiYsW594tudpwfzF06lfYdWfNu5P+Fh4djZJYx2h4aG8f59FI6OeXFp58wxjzO8fv2GXLlzMmJkf96/e8/hwycUy21iboq944eLiHLktSNfSUfCQ8IJ8n9NREi4zvaxsXG8fRVM4CN/bVvD7s3wvnqf95HvKV2rHJ1+7M72Ob8TGarMDA8/LXCjfYeWdO08kPCwiEQ/i38UKJiPGjWr0KldH0Vy/luOUT0JP3mF2ICXqC3MsW5ZF/NqZXjaa1JCp3jtTFSmJviP/ilh/uL/zWEcF/QW4uOJ8X1O2NHz2E/oT+Ckn4kLj8RuVE+iHz0j8uItxc5rwcJptO/Yii6d+hEWHq79Fij07YefhZ19duztc1CwYH4ASpYqTnh4OM+e+qebi/Rcp47A49Apnj/1x97BjuHjBhAXF8/fOw+SN39uWrRpwukT5wl6HYxDLnsGDPue9++jOHH0jNLRP2r27Ins23cUP79n5Mxpz+TJo4iLi2Pr1t1KR0sVCwtzChf+MD92Acd8lCtXiqCgYJ4+9f/IMzOe+PTR1VDUF3WM/2FgYECbNm1o06aNPnaXof3000+Eh4fTsmVLrKysGDVqFG/ffvjju3btWoYNG0aLFi2Ijo6mTp067N+/HyOjhE/+NWvWZMWKFUydOpWJEyfSpEkTRowYwdKlyddhpqUGDWqTP38e1q3PeLNR/Nv27XvIkT0bbpNH4+CQg5s37+Lc4rtE02ylF336Jlxwtv/gHzrtA/uPZfOmP3n/PgqnGlUYOOh7smSx5uXLN5w7e4lGDTvw+lXSU0ClhQJlC+G6ZZr28beTEqbXOr3jOL9+pLb43wqWK0zbEZ0wMTcl4NFz1v24knO7Tn6VvCnRu29XAPYe3KTTPmjAOP7Y9GFara7d2uP/PJBjHsp3Xgyy2ZBr7igM7LIRHxZBlNdjnvaaROS565hXLYNZ+eIAFPLQHdzwqddTOyIcMGYedj/2I88qN4jXEHn5Nk97T9IpuUhrffol/F4cOKT792hA/zFs/v1PAHr37orrhA/1+IeObE20jdIcctmzeJU7WbLaEPQmmCsXb9CuaXeC3gRjaGRIleoV+L7/t1hnseb1qzdcPn+N9s178uZ1sNLRPypP7pxs3LAUW9usvHoVxLlzl6hdp1WiqT/Tu8qVyuFxdIf28fx5bgCs37CN3n2Svr5AZFwqzb/nQRLpUt++fbl//z6nT5/+9Mb/Y2yS59MbpXPxmeSlaWGs3F3a9KlN9vJKR/hif79RbnRTn87lzPgzA1V9fl/pCHqR3cxG6Qh68SwsfV9fkRKZ5T0jNvq5Ysf+y+Fbve2rdeBmve0rLellxFjo17x582jUqBEWFhYcOHCA9evX88svvygdSwghhBCZWOb4aPFlpGOcDl26dIm5c+cSFhZGwYIFWbJkCX36KF+nKIQQQgiRmUnHOB3atm2b0hGEEEII8f9MRp5/WF+kYyyEEEIIIYhPJzNgKSnV8xgLIYQQQgiRGcmIsRBCCCGEkIvvkI6xEEIIIYRAaoxBSimEEEIIIYQAZMRYCCGEEEIgt4QG6RgLIYQQQgggHukZSymFEEIIIYQQyIixEEIIIYRAZqUA6RgLIYQQQgikxhikY5xpxWvkc196ER0Xq3QEvfj7zS2lI3yxiJj3SkfQi7JPMv7P4u2+iUpH0Avr5tOVjqAXanUmqKyU9z2hB9IxFkIIIYQQMo8x0jEWQgghhBBIjTHIrBRCCCGEEEIAMmIshBBCCCGQi+9AOsZCCCGEEAKpMQYppRBCCCGEEAKQEWMhhBBCCIGMGIN0jIUQQgghBKCRGmMppRBCCCGEEAJkxFgIIYQQQiClFCAdYyGEEEIIgXSMQUophBBCCCGEAKRjrDcajYZ+/fqRLVs2VCoVN27cUDqSEEIIIUSKafS4ZFTSMdaTgwcPsm7dOvbu3UtAQAClS5dWOpLejRs7mPPn9hH8xgv/Zzf5c8caihYtpHSszzZwQA8ePrhAeKgP5878TZXK5ZWO9FE1a1Zlx441PHp0iXfvntCyZeNkt12yZCbv3j1h8OBeaZjw04aP6s/RE3/yxP86Xo8usPGPXyhcpIDONnZ22Vm+6ic8H57jaeBNjp/eTctWTRRKnDKWlhbM+2kKDx6cJyTYmxPHd1GpUjmlY6VarlwOrFu7hAD/27wNeci1q0epWLGs0rG0lu87T/lBC3WWNtPWaddP33yUFlN+o9rwJdQbt4LhK/7icWCQzj7mbDtOl9mbqDJsCR1n/Z7GZ/B5xowZREz0c+bPm6p0lFRRq9VMmTIar/tnCQn2xvPeGVxdhykdK9Uy23vfx8Sr9LdkVFJjrCc+Pj7kzJmTGjVqJLk+OjoaY2PjNE6lX3VqV2f58vVcuXoDQ0NDZkwbz4F9mylTri6Rke+UjpcqHTq0Yt5PU/hh0HguXb7O0CF92L9vEyVL1+HVqzdKx0uShYU5t297smHDNrZuXZXsdq1aNaFq1Qr4+wemYbqUqVmzKmtWb+L61VsYGBoyyW0Uf+5ei1OVZtrX0PJVP2FtY0XXTgN48yaY9h1a8tuGxdSv48LtW/cUPoOkrVj+E6VKFaVXr+EE+L+gy7dtObB/M+UrNEiXP4ekZMliw4njuzh58hwtW3Xj9es3FC5cgJCQt0pH01Eopy0rh7TTPjYw+DC+UyKfHc2rFMchmxWhEe9Zsf8CA5fuZN+0XhioP2zX2qkUd3wDefD8dZpm/xyVK5Wjb5/vuJVOX/sfM3r0D/Tr240+fUZwz/MBFSuWZfWq+YS+DWXZL2uVjpdimem9T3yajBjrQc+ePRkyZAh+fn6oVCocHR2pW7cugwcPZvjw4WTPnp0mTRJGvE6ePEnVqlUxMTEhZ86cjB8/ntjYWO2+wsLC6Nq1KxYWFuTMmZOFCxdSt25dhg8frtDZfeDc8js2bNzGvXsPuHXrHr36DCd//jxUSkcjSik1Ylhffl2zmfUbtuHp6c0Pg8YTGfmO73t2Vjpasg4fPsHUqfPYs+dQstvkymXPggVT+f77YcTExKRhupTp4NKbPzbt5P79h9y9c59BA8aRN19uylX48A1LlWoVWL1yI9eu3uKJ71Pm//QLb9+GUr5CKQWTJ8/U1JS2bZvx44+zOHPmIj6PfJkxYyE+Pr7069dN6XgpNmb0Dzx75k/ffqO4cuUGvr5POXr0FI8ePVE6mg4DtZrsNhbaJaulmXZd+1plqVQkD7ltbSiRz55BLWsQGByG/5tQ7TbjOtaj8zflyZ3dRon4qWJhYc76DUsZMHAswcEhSsdJNafqlfh772EOHDzGkyfP2LVrP0ePnqJylfJKR0uVzPTe9ynxelwyKukY68HixYuZNm0aefLkISAggMuXLwOwfv16jI2NOXv2LCtWrOD58+c0b96cKlWqcPPmTZYvX86aNWuYMWOGdl8jR47k7Nmz7NmzhyNHjnD69GmuXbum1Kl9lI2NNQBBGewPtpGRERUrlsXj2Gltm0ajwePYGapXr6Rgsi+jUqlYs2YRCxeuxNPTW+k4KWJtbQlASFCItu3yxeu0bedMlqw2qFQqXNo5Y2JiwpnTFxVK+XGGhgYYGhryPipKp/3d+/fUqFFFoVSp16JFI65eu8Ufm1fw7OkNLl08SK9e3yodKxG/V8E0+nEVzpPX4Lr2AAFBoUlu9y4qhr/O3yW3rTUOWa3SOKV+/LxkFgf2e3DsX3+rMpLzF65Sr15NihROKJcqU6YENWpU4dCh4won+zIZ9b0vJaRjLKUUemFjY4OVlRUGBgY4ODho24sUKcLcuXO1jydMmEDevHlZunQpKpWK4sWL4+/vz7hx45g8eTIRERGsX7+ezZs306BBAwDWrl1Lrly5Pnr8qKgoov7zpqzRaFCpvl6Rj0qlYsG8qZw9e4m7d72+2nG+huzZs2FoaMjLF7pfo758+YrixTJu3dioUQOJjY1l2bKM8RWlSqVi1pyJXDh/Racj/32Pofy2bjGP/K4QExPDu8j3dP92EI8f+SmYNnnh4RGcP38FV9dh3L//kBcvXtGpU2uqV6uEj4+v0vFSrECBfPTv143Fi1czZ87PVKpcnoULphETHc3G33coHQ+AMo4OTOvWBEf7rLx+G8GK/RfotWAbOyZ2x8I0oVRt66mbLNp1mnfRMTjaZ2XFkHYYGRoonDz1OnZsRYUKpanu5Kx0lM/200/LsLay5NatE8TFxWFgYMDkKXPZsmW30tE+W0Z+7xMpIx3jr6hSJd3RR09PT5ycnHQ6rDVr1iQ8PJxnz54RHBxMTEwMVatW1a63sbGhWLFiHz2Ou7s7U6fqXpShUluiMrDWw1kk7eclsyhVqhjf1Gv71Y4hUq5ChdIMGvQ9NWpknDfRnxa4UaJEEZo37qLT/uPE4djYWNOmRXfevAnGuUVDflu/mOZNuuB574FCaT+uV+/hrFw5D9/HV4iNjeX69Tts3fYXFSuUUTpaiqnVaq5evcWkyXMAuHHzLqVKFaNv327ppmNcq9SHCzWL5s5BaUcHmk9aw+FrD2hbI6Ecp3mV4lQvno/XbyPY4HGVsWv2sW5UJ0yMMs7bXZ48uVgwfxrNmndJNOiRkbRv35LOXdrSvccQ7t17QLlyJZn3kxsBAS/4PZ28plIrs7/3ZeTZJPRFSim+IgsLizQ5jqurK2/fvtVZVOqv99Xh4kUzcG7ekIaNO/D8ecBXO87X8vp1ELGxsdjZZ9dpt7PLQeCLVwql+jI1a1bFzi47Dx6cJyzMh7AwH/Lnz8vs2RO5f/+M0vESmTNvMk2a1qOVczedi9McC+Sj34DuDPlhPKdOnufunfvMnb2U69dv06ffdwom/rhHj57QqFEHsmYrSqHC1ahVuyVGhkY8fpw+R7mTEhDwMlEJzv373uTNm1uhRJ9mbW5KPrusPH0Vom2zMjMhv11WKhXJw7w+LXj8IohjNx8qF/IzVKxYBnv7HFy6eJB3kU94F/mEb76pweDBvXgX+QS1OmO8dbu7T2DeT7+wffse7t69z+bNO1ny86+MHTNI6WifJaO/96WEzEohI8ZpqkSJEvz55586ZQ5nz57FysqKPHnykDVrVoyMjLh8+TL58uUD4O3btzx48IA6deoku18TExNMTEx02r5WGcXiRTNo07opDRp1wNf36Vc5xtcWExPDtWu3qF+vlvZCNpVKRf16tfhlecYoQ/ivzZt3cuyYbgf47783snnzTjZs2K5QqqTNmTcZ55aNaNX8O/yePNNZZ2ZmCkC8RnfcIj4uHrU6/f+ljYx8R2TkO7JksaFRozr8OGGW0pFS7Pz5KxQtWlCnrUiRgvj5PUvmGcqLfB/Ns9chZLcukeR6jUYDGoiOiUvjZF/m2LEzlK9QX6ft19UL8PLy4ad5y4iPzxgVnOZmZomyxsXFZZiO/b9lhvc+kTLSMU5DP/zwA4sWLWLIkCEMHjwYLy8vpkyZwsiRI1Gr1VhZWdGjRw/GjBlDtmzZsLOzY8qUKajV6q9aL5xSPy+ZRZfObXBp14uwsHDs7XMA8PZtGO/fv1c4XeosXLyatWsWcvXaLS5fvs7QIX2xsDBj3fqtSkdLloWFOYUKOWofOzrmpWzZkgQHh/D0qT9B/7qADRI+ALx48Qpv70dpG/QjflrgRvsOLenaeSDhYRHY2SWM2oeGhvH+fRTeDx7h89CXBYunM3nCbIKCQnBu0ZC69WvSuUM/hdMnr1HDb1CpVDzw9qFQIUfcZ03Ay8uH9eu3KR0txRYvWc2pk7sZN3YwO/7cS5XK5enTuys//DBO6WhaC3aeok6ZguTMZsWrtxEs33ceA7WappWL8ex1CIeuPsCpRH6yWprxIiSctYcvY2JsSO3SH0ow/F6GEBkVzZvQCKJiYrn/9CWQMA1ceqlFDg+PSFS/GhERyZs3wRmqrnXf/qOMGzeEp0+fc8/zAeXKlWbY0L6sT8d/Z5OSmd77PiVjfOT6uqRjnIZy587N/v37GTNmDOXKlSNbtmz07t2biRMnardZsGABAwYMoEWLFlhbWzN27FiePn2KqampgskTDBzQA4BjHn/qtPfqPYINGzNOBwBg+/Y95MieDbfJo3FwyMHNm3dxbvEdL1+m33lNK1Ysy+HDH95Q5s6dDMDGjdvp12+0UrFSpXffrgDsPbhJp33QgHH8sWknsbGxdGrfhylTx7B520osLMx5/OgJP/Qfy9HDJ5WInCLWNlbMmD6e3LkdCAoKYffuA0yeMldnKsb07urVm3To2IcZ012ZMGE4vr5PGTXajT+27FI6mtaLkDBc1+4nJOI9WS3NqFAoFxtGdyablTmxcfFce/icTcevExr5HlsrcyoWzsP6UZ3IZmWu3cfUzUe46v1hFLzz7ITX4r5pvchtm/6ncMtIRoyYhNuU0SxeMhO7HNkJCHjBr2s2MXPmIqWjpUpmeu/7FKkxBpVGo5H/h3QsIiKC3LlzM3/+fHr37p3i5xkap9+6wP9vjAwyx+dPM8OMfYMagIiYzDG6kxn+bL/dN/HTG2UA1s2nKx1BLzJiecN/xWWQEpNPiY1+rtix3fPr71oO1ycpv7Oku7s7O3fu5P79+5iZmVGjRg3mzJmjM/nA+/fvGTVqFFu2bCEqKoomTZrwyy+/YG9vr93Gz8+PgQMHcvz4cSwtLenRowfu7u4YGqb8fTjj/yZkMtevX+ePP/7Ax8eHa9eu0bVrwghb69atFU4mhBBCiMwsHo3eltQ4efIkgwYN4sKFCxw5coSYmBgaN25MRESEdpsRI0bw999/s337dk6ePIm/vz8uLi7a9XFxcTg7OxMdHc25c+dYv34969atY/LkyanKkjmGsjKZefPm4eXlhbGxMZUqVeL06dNkz579008UQgghhPhM+hxzT+oeC0lNFgBw8OBBncfr1q3Dzs6Oq1evUqdOHd6+fcuaNWvYvHkz9esnXJi6du1aSpQowYULF6hevTqHDx/m3r17HD16FHt7e8qXL8/06dMZN24cbm5uGBun7FtPGTFOZypUqMDVq1cJDw8nKCiII0eOUKZMxpkLVQghhBDC3d0dGxsbncXd3T1Fz3379i0A2bJlA+Dq1avExMTQsGFD7TbFixcnX758nD9/HoDz589TpkwZndKKJk2aEBoayt27d1OcW0aMhRBCCCGEXi++c3V1ZeTIkTptSY0W/1d8fDzDhw+nZs2alC6dcOOewMBAjI2NyZIli8629vb2BAYGarf5d6f4n/X/rEsp6RgLIYQQQgi9llIkVzbxKYMGDeLOnTucOaPMzamklEIIIYQQQihu8ODB7N27l+PHj5MnTx5tu4ODA9HR0YSEhOhs/+LFCxwcHLTbvHjxItH6f9allHSMhRBCCCGEYreE1mg0DB48mF27dnHs2DEKFCigs75SpUoYGRnh4eGhbfPy8sLPzw8nJycAnJycuH37Ni9fvtRuc+TIEaytrSlZsmSKs0gphRBCCCGESPU0a/oyaNAgNm/ezF9//YWVlZW2JtjGxgYzMzNsbGzo3bs3I0eOJFu2bFhbWzNkyBCcnJyoXr06AI0bN6ZkyZJ069aNuXPnEhgYyMSJExk0aFCqSjqkYyyEEEIIIRSzfPlyAOrWravTvnbtWnr27AnAwoULUavVtGvXTucGH/8wMDBg7969DBw4ECcnJywsLOjRowfTpk1LVRbpGAshhBBCCMVuCZ2Su3mampqybNkyli1bluw2+fPnZ//+/V+URTrGQgghhBBCr7NSZFRy8Z0QQgghhBDIiLEQQgghhEC5i+/SE+kYCyGEEEII6RYjHeNMS61K5SSC6VB8CorxM4K4+DilI+jFu9hopSN8MRMDI6Uj6MX7TPCzsHGeoXQEvQg9MEXpCHqRxXm60hG+WMZ/1xPpgXSMhRBCCCGEXHyHdIyFEEIIIQRSYwwyK4UQQgghhBCAjBgLIYQQQgjk4juQjrEQQgghhEBqjEFKKYQQQgghhABkxFgIIYQQQgAaKaaQjrEQQgghhJBSCpBSCiGEEEIIIQAZMRZCCCGEEMg8xiAdYyGEEEIIgUzXBlJKIYQQQgghBCAd44+qW7cuw4cPVzqGEEIIIcRXF49Gb0tGJR1jkSq5cjmwbu0SAvxv8zbkIdeuHqVixbJKx/osAwf04OGDC4SH+nDuzN9UqVxe6UipkhF/FjVrVmXHjjU8enSJd++e0LJlY531EyYM58YND16/9sTf/xb79m2iSpXyyoRNxsjRAzlxajfPA2/h43uJzVtWULhIAZ1ten7fmX0HNvMs4CahEY+wsbFSKG3qZMTX1H898DpPdNSzRMvixTOUjqa1fO85yv8wX2dpM/U37frpm4/QYvKvVBu2mHpjf2H4it08DnyjXe/17CXjf9tLkx9XUm3YYtpOXcumY9eUOJWPUqvVTJkyGq/7ZwkJ9sbz3hlcXYcpHeuLjBkziJjo58yfN1XpKF9FvB6XjEpqjNNQdHQ0xsbGSsf4bFmy2HDi+C5OnjxHy1bdeP36DYULFyAk5K3S0VKtQ4dWzPtpCj8MGs+ly9cZOqQP+/dtomTpOrx69ebTO1BYRv1ZWFiYc/u2Jxs2bGPr1lWJ1j98+JgRIybz+LEfZmamDBnSh7//3kjp0t/w+nWQAokTq1WrKqtWbeTa1VsYGhowxW0Mu/dsoGqlxkRGvgPA3NyMo0dPcfToKaZOG6tw4pTJqK+p/6pR0xkDAwPt41KlinHwwBb+/HOfgqkSK5TTlpVDO2gfGxiotP8ukc+e5lVK4JDNitCI96zYd46BP//Jvul9MFCr8fR7QVZLc2b2bI5DNitu+vgzffMRDNQqOtf9v/buO6yp+/3/+DOATFkOFK0ILgTB3arVT1urdY9KbeumDqy14q7Wr3VbsU4crdYN7lXtwFlU3OJCHFRFHKgoKIKCyszvD3+mjaAGBA6J98Mr10XOOUleRxJy5537vE8tJXYnW8OH96evT3f69BnChYhL1K5dncWLZvIw8SE//7Jc6Xg5VrdODXz6dCM8/ILSUUQ+khHj18jMzGTEiBEUK1aM0qVLM378eM26Gzdu0L59e4oWLYqNjQ1ffPEFd+/e1awfP348NWvWZMmSJbi4uGBubg7Apk2b8PT0xMLCguLFi9O0aVOSk5M1t1uyZAlubm6Ym5tTtWpVfvnllwLb31f5bnh/bt68jU/fYZw4Eca1a9H8/fd+oqKuKx0tx4YM8mHJ0jUEBG4gIuIy/b/9nsePn9Dzq05KR9OJvv4udu3ax4QJM/jjj53Zrl+//nf27j3EtWvRRERcZuTISdja2uDh4VbASV/O69OerFm1mX8iLnPu7D/0+/o7nJzKUrOWh2abX35ezuyZCzkeelrBpDmjr8+pF927F8/du3GaS6tWTYm8co39+48oHU2LsbERJWytNBf7opaadR0bVadO5XcoW9wWN6dSfNu2EXcePOL2/YcAfPq+JyO/+Ji6VcrxTgk7Wtdzp12DagSHXVZqd7LVoH4d/vxrF9t37OH69Zts2bKNv//eT91C9i2QLqysLAkInE+/b0bw4EGC0nHyjToP/+krKYxfIyAgACsrK44dO8a0adOYOHEiu3fvJjMzk/bt2xMfH09ISAi7d+8mKiqKL7/8Uuv2kZGRbN68md9++42wsDBiYmLo3LkzvXr1IiIign379uHl5YVa/exJtHr1asaOHcuPP/5IREQEU6ZMYcyYMQQEBCix+1ratPmEk6fCWbtmITejwwg9toNevbooHSvHihQpQu3a1Qnec0CzTK1WE7znIPXr11Ewme4M5XfxKkWKFKF37y4kJCRy9mzhHaGxtXnWJvHggX6NrL7IEJ9TRYoUoUtnLwJWrFM6ShY3Yh/wyaiFtB6zhFHLg4iJf5jtdk9S0vj96DnKFreltP3LW3KSnqRia2WeX3Fz5cjRkzRu3JDKlZ61Gnl6uvH++++yc+dehZPl3Ly5U9i+LZg9/3nfMETSSiGtFK9VvXp1xo0bB0DlypWZP38+wcHBAJw9e5arV69Srlw5AAIDA6lWrRrHjx/n3XffBZ61TwQGBlKyZEkATp06RXp6Ol5eXpQvXx4AT09PzeONGzeOmTNn4uXlBYCLiwsXLlzg119/xdvbO9uMKSkppKSkaC1Tq9WoVKpst88tFxcnvu7bnTlzFvPTT/OoU7cms2dNJC01lZWrNuXpY+WnEiWKYWJiQuzde1rLY2PjqOpaUaFUOWMov4vstGz5MYGB87G0tODOnVjatOnG/fsPlI6VLZVKxdRpYzhy+AQRFy4pHeeNGOJzqn275tjZ2RC4cqPSUbR4ujgysUcLnB2Kce9hMguDDtNr1jo2/fAVVubP2u3Wh4Thv3U/T1LScC5lz8KBHSliYpzt/YVducWukxeZ279DQe7Ga02f/jM21kUJD99HRkYGxsbGjB03jXXrtiodLUe++KIdtWp5UL9Ba6WjiAIghfFrVK+ufeCJo6MjsbGxREREUK5cOU1RDODu7o6dnR0RERGawrh8+fKaohigRo0aNGnSBE9PT5o3b06zZs3o2LEj9vb2JCcnc+XKFXr37o2Pj4/mNunp6dja2r40o5+fHxMmaB8IYGRkjbGJzRvt+4uMjIw4eTKcMWN/AiDszHmqVXPFx6e73r5x6itD/l2EhByhXr2WlChRjJ49O7Nq1S988EH7Qtn7PXP2RNzcq9C86RdKR3ljhvic+qpnJ3bu3EtMzN3Xb1yAGlX792DNKpTEw7k0rX5YzK6TF+nQ8NlASav33KjvVp57ickE/n2cEUv+ZMXwzpgV0X7bjrx9jyG//s7XrRvwvrtzQe7Ga3Xs2JZOnTvQw9uXCxcuUaOGOzOmjycm5i6r9OQ59c47ZZg1cyItW3XOMgBliPS5BSKvSCvFaxQpUkTrukqlIjNT9y8JrKystK4bGxuze/dutm/fjru7O/PmzcPV1ZWrV6+SlJQEwOLFiwkLC9Nczp07x9GjR1/6GKNGjSIxMVHrYmSc90fBx8TEEhGh3cP2zz+XKVeubJ4/Vn66dy+e9PR0HEqV0Fru4FCSO3fjFEqVM4byu8jO48dPiIq6Tmjoab75ZgTp6el4e3/5+hsWsBkzx9OiZWPatOzC7dt3lI7zxgztOeXkVJYmH/+PZcvXKh3ltWwszXFysCc6LkGzzNrCjPIO9tSp/A4zfNpx9W48e17oIb4Sc5++czbi1bA6Pi3rF3Dq1/PzG82M6b+wceMfnD//D2vW/MbceUsY8d23SkfTWe3anpQqVZLQYzt48vg6Tx5f58MP32fAgF48eXwdIyPDKqOklUIK41xzc3MjOjqa6OhozbILFy6QkJCAu7v7K2+rUqlo2LAhEyZM4PTp05iamrJlyxZKlSpFmTJliIqKolKlSloXFxeXl96fmZkZNjY2Wpe8bqMAOHLkBFWqVNBaVrlyBW7cuJnnj5Wf0tLSOHUqnI8bN9IsU6lUfNy4EUePnlQwme4M5XehCyMjI8zMCtdsLjNmjqdNu2a0bdWN69cN4//c0J5T3j2+JDb2Htu2BSsd5bUeP03l5r1ESthaZbterVaDGlLTMzTLIm/fw8d/A23ruePbvlG2t1OapYVFloGkjIwMvSom9+w5SM1aH1P33Waay4kTYaxdu4W67zbL0UCZ0A/SSpFLTZs2xdPTk65du+Lv7096ejr9+/fnww8/pG7dui+93bFjxwgODqZZs2Y4ODhw7Ngx4uLicHN7dtT9hAkTGDhwILa2trRo0YKUlBROnDjBgwcPGDp0aEHtXrbmzF3M/pCtjBwxgE2b/+LdujXp07sr/fuPVDRXbsyes5jlS2dz8lQ4x4+fZqCvD1ZWFqwIWK90NJ3o6+/CysqSihWdNdednctRvbo7Dx4kcP/+A0aOHEBQ0N/cuRNL8eL2fP21N2XKlOK33wrPVFuzZk+k4xft6PxlXx4lJWm+eXiY+IinT5991epQqgSlSpWkQoVnxxG4V6tKUlISN6NvF9qD9PT1OZUdlUpFjx5fsGrVJjIyMl5/gwI2a/M+PvCsiGNxG+ISklgQdBhjIxUt6lbl5r0Edp64SAN3Z+yLWnD3wSOW7wrFzNSE/3k8++DyvCh+392Z7k3qci/x2axGRkYqillbvuqhC1TQtr8ZOdKX6OhbXIi4RI0aHgwa6EOAnvydBUhKSub8+Ytay5KTH3P//oMsyw1BplpaKaQwziWVSsXvv/+Or68vH3zwAUZGRrRo0YJ58+a98nY2Njbs378ff39/Hj58SPny5Zk5cyYtW7YEoE+fPlhaWjJ9+nS+++47rKys8PT0LBRn4Dt58gyff9GHyZNGMXr0YK5di2bY8PGsXbdF6Wg5tnHjH5QsUYzxY4dTunRJzpw5T+s23YiNvff6GxcC+vq7qF27Ort2/fumOG3aWABWrtyIr+9oXF0r0a1bR4oXtyc+PoETJ87QtOnnWb7iV1Kfvt0A2L5Te6aDfl9/x5pVmwHo3bsro0b/eyKDnbvXZ9mmsNHX51R2mjT5H+XLv8OKgMI3GwXA3YQkRi0PIiH5KfZFLahVsSyB33WhmLUl6RmZnLpyi9V7T/Hw8VOKW1tSu/I7BAzvrCl6d5+6xIOkJwSFRhAUGqG5X8diNmyf7POyhy1wQ4aMYfy44cyZ+yMOJUsQE3OXJUtX8+OP/kpHEy8hZTGo1Gr5eGCITM3eUTrCGzOUT65G+dDWogRjo+yPiNcnRQxgHwCepqcqHUH8f4nbxiodIU/YtZ6kdIQ3ZihtDWmptxR77G7lvfLsvlZd/y3P7qsgyYixEEIIIYQgU8aMpTAWQgghhBAyXRvIrBRCCCGEEEIAMmIshBBCCCHQ7/mH84oUxkIIIYQQQnqMkVYKIYQQQgghABkxFkIIIYQQyMF3ICPGQgghhBBCADJiLIQQQgghkIPvQApjIYQQQggByMmQpZVCCCGEEEIIQEaMhRBCCCEEMl0bSGEshBBCCCGQHmOQwthgGRsZKx3hjWVmpCsdIU9kGkrPVmaG0gneWJqBPKdE4WHdcoLSEfJE0pGflY7wxuwbDVI6gjAAUhgLIYQQQgiZxxgpjIUQQgghBNJjDDIrhRBCCCGEEICMGAshhBBCCGQeY5DCWAghhBBCILNSgLRSCCGEEEIIAciIsRBCCCGEQGalACmMhRBCCCEEMisFSCuFEEIIIYQQgBTGQgghhBCCZ7NS5NUlJ/bv30/btm0pU6YMKpWKrVu3Zsk1duxYHB0dsbCwoGnTply+fFlrm/j4eLp27YqNjQ12dnb07t2bpKSkHP8fSGEshBBCCCHIRJ1nl5xITk6mRo0a/Pxz9qcmnzZtGnPnzmXhwoUcO3YMKysrmjdvztOnTzXbdO3alfPnz7N7927++usv9u/fT9++fXP8fyA9xkIIIYQQQjEtW7akZcuW2a5Tq9X4+/vzww8/0L59ewACAwMpVaoUW7dupVOnTkRERLBjxw6OHz9O3bp1AZg3bx6tWrVixowZlClTRucsMmKcj7766is+/fTTV27j7OyMv79/geQRQgghhHgZdR7+S0lJ4eHDh1qXlJSUHGe6evUqd+7coWnTpppltra21KtXjyNHjgBw5MgR7OzsNEUxQNOmTTEyMuLYsWM5ejwpjBV2/PjxXA31F4SGDd9j06alREWF8uTJddq2baa1fvTowYSFBXPvXgS3b4cTFLSad9+tqUzYHPhfo3ps3bKCG9dOkp56i3btmisdKVcMZT/KlCnNiuVzibl9lsSESE6d/JvatasrHStHRo4YwJHDQTy4f5HbN8+wedNSqlSpqHSsXPmmnzeRl46S9PAKhw/+ybt1ayodKVf0fT8K++t7wabd1OgyUuvSftgMzfrek37Nsn7S0t+y3M/vISfoOHI273qP5qN+E5myfGsB7kX2XvXeZ2JiwuTJ33P8+E7u3YsgKiqUJUtm4ejooGDivJOpVufZxc/PD1tbW62Ln59fjjPduXMHgFKlSmktL1WqlGbdnTt3cHDQ/h2YmJhQrFgxzTa6klYKhZUsWVLpCC9lZWXJ2bMRBAZuYP36RVnWR0ZeZciQsVy9egMLC3N8ffvw558r8fD4kHv34hVIrBsrK0vCwy+wfMU6Nm9cqnScXDOE/bCzs2Xf3i2EhBymbbvu3Lt3n0qVXEhISFQ6Wo588L/6LFgQwImTYc/eOCd+z/agNXjW+IjHj58oHU9nn3/ejhnTx9H/2+8JPX6agb592Ba0GnePD4iLu690PJ0Zwn7ow+u74julWPR/PprrxkbaY22fNX6P/p//W1SamxbRWh8YtJ/AbQcY2qUVnpWceJKSyu24B/kbWgeveu+ztLSgZk0Ppk6dS3h4BPb2tsyYMY6NG5fSqFFbhRIXTqNGjWLo0KFay8zMzBRKozspjPPApk2bmDBhApGRkVhaWlKrVi1+//13zfoZM2Ywc+ZMUlNT6dSpE/7+/hQp8uwPhLOzM4MHD2bw4MEAqFQqfvnlF/744w/27duHo6Mj06ZNo2PHjgW+X7t27WPXrn0vXb9+/e9a10eOnETPnp3w8HBj375D+Zwu93bs3MuOnXuVjvHGDGE/vhven5s3b+PTd5hm2bVr0Qomyp3WbbtpXe/VZzB3bp+lTu3qHDiYs6/xlDRkkA9Llq4hIHADAP2//Z5WLZvQ86tOTJue/UExhZEh7Ic+vL5NjI0oYWf90vXmZkVeuv5h0mN+3riLucO/op5HJc3yKk6OeZ4zp1713vfw4SPatNF+vQ8ZMpaDB/+kXLkyREffLoCE+ScvZzE2MzPLk0K4dOnSANy9exdHx3+fH3fv3qVmzZqabWJjY7Vul56eTnx8vOb2upJWijcUExND586d6dWrFxEREezbtw8vLy/NVCV79+7lypUr7N27l4CAAFasWMGKFSteeZ9jxozhs88+48yZM3Tt2lXTWF6YFSlShN69u5CQkMjZsxeUjiP0RJs2n3DyVDhr1yzkZnQYocd20KtXF6VjvTFbWxsA4h8kKBskB4oUKULt2tUJ3nNAs0ytVhO85yD169dRMFnOGMp+6IPrd+7RtP9kWg36iVHz1xJzT3u0d9uhMD7sOwGvEbOYs247T1JSNeuOnLtMplpNbHwinw6fwScDfuS7Oau4cz+hgPfizdnYWJOZmUlCwkOlo7wxpWaleBUXFxdKly5NcHCwZtnDhw85duwYDRo0AKBBgwYkJCRw8uRJzTZ79uwhMzOTevXq5ejxZMT4DcXExJCeno6Xlxfly5cHwNPTU7Pe3t6e+fPnY2xsTNWqVWndujXBwcH4+Pi87C75/PPP6dOnDwCTJk1i9+7dzJs3j19++SXb7VNSUrI0tKvValQq1Zvu3mu1bPkxgYHzsbS04M6dWNq06cb9+8p/FSb0g4uLE1/37c6cOYv56ad51Klbk9mzJpKWmsrKVZuUjpcrKpWKWTMmcOhQKOfPX1Q6js5KlCiGiYkJsXfvaS2PjY2jqqv+9Esbyn4Udp6VyjHp6y9wLlOSuAcP+fW3v+k5cSGbfxqKlYUZLd+viWMJOxzsbbh04w7+67ZxLSaO2UN6AHAzNp7MTDVLft/LiB5tsbY0Z/6GXXw9ZQmbfhpMERP9KE/MzMyYPHkUGzb8waNHOZ8zVzyTlJREZGSk5vrVq1cJCwujWLFiODk5MXjwYCZPnkzlypVxcXFhzJgxlClTRjPBgZubGy1atMDHx4eFCxeSlpbGgAED6NSpU45mpAApjN9YjRo1aNKkCZ6enjRv3pxmzZrRsWNH7O3tAahWrRrGxsaa7R0dHTl79uwr7/P5J6D/Xg8LC3vp9n5+fkyYMEFrmbGxDUWK2OVsZ3IhJOQI9eq1pESJYvTs2ZlVq37hgw/a600fn1CWkZERJ0+GM2bsTwCEnTlPtWqu+Ph019vCeN7cKVSr5sqHjTsoHUWIfNOoZlXNz1WcHPGs5ETLgX7sPHoGr8bv0bHJv6N0lZ0cKWFvTd8fFxN99z7lShVHnakmPSODkd7teL96FQCm+namyTeTCT1/hYY1XAt8n3LKxMSEVat+RqVSMXDgaKXj5AmlTgl94sQJGjdurLn+vDfZ29ubFStWMGLECJKTk+nbty8JCQk0atSIHTt2YG5urrnN6tWrGTBgAE2aNMHIyIjPPvuMuXPn5jiLtFK8IWNjY3bv3s327dtxd3dn3rx5uLq6cvXqVQBNL/FzKpWKzMzMPM0watQoEhMTtS4mJrZ5+hgv8/jxE6KirhMaeppvvhlBeno63t5fFshjC/0XExNLRIT22Yv++ecy5cqVVSjRm5njP5nWrZrStNnn3LoVo3ScHLl3L5709HQcSpXQWu7gUJI7d+MUSpVzhrIf+sbGyoLyjiWJvpv9oIhnRScAbtx5NpL/vPe4Ytl/ZxIoZlMUO2srvWinMDExYfXqn3FyKkubNl0NZrRYqTPfffTRR9nex/PWU5VKxcSJE7lz5w5Pnz7l77//pkqVKlr3UaxYMdasWcOjR49ITExk2bJlFC1aNMf/B1IY5wGVSkXDhg2ZMGECp0+fxtTUlC1btuT6/o4ePZrlupub20u3NzMzw8bGRutSEG0U2TEyMsLMzFSRxxb658iRE1SpUkFrWeXKFbhx46ZCiXJvjv9kPm3fgk+af6GXBxCmpaVx6lQ4HzdupFmmUqn4uHEjjh49+YpbFi6Gsh/65vHTFKLv3qeEnU226y9ef3ZQWkn7Z+trujoDcC3m35aXxKTHJDxKxrGEff6GfUPPi+KKFV1o3bor8fEJSkcSeUhaKd7QsWPHCA4OplmzZjg4OHDs2DHi4uJwc3MjPDw8V/e5ceNG6tatS6NGjVi9ejWhoaEsXVrw0/VYWVlSsaKz5rqzczmqV3fnwYME7t9/wMiRAwgK+ps7d2IpXtyer7/2pkyZUvz2W1CBZ80JKytLKlVy0Vx3cXaiRo1qxMc/0Ksjig1hP+bMXcz+kK2MHDGATZv/4t26NenTuyv9+49UOlqOzJs7hc6dPsXrs148epREqVLPpmFMTHykdcrSwm72nMUsXzqbk6fCOX78NAN9fbCysmBFwHqlo+WIIexHYX99z1z9Fx/WdsexhB1xDx6yYNNujI2MaPl+DaLv3mfbodP8r2ZVbK0tuXzjDtNX/kmdqi6aWSecHUvSuI47PwX+wdg+XlhZmDN33Q6cy5TkXXdle8Ff9d4XExPLmjULqFXLAy+vXhgbG2te7/HxCaSlpSmUOm8o1UpRmEhh/IZsbGzYv38//v7+PHz4kPLlyzNz5kxatmzJ+vW5+yM8YcIE1q1bR//+/XF0dGTt2rW4u7vncfLXq127Ort2/bsP06aNBWDlyo34+o7G1bUS3bp1pHhxe+LjEzhx4gxNm36e5avxwqZunRoE//1v/+rMGeMBCAjcQO8+QxRKlXOGsB8nT57h8y/6MHnSKEaPHsy1a9EMGz6etety/42LEr7p5w3AnuDNWst79R5C4MoNSkTKlY0b/6BkiWKMHzuc0qVLcubMeVq36UZs7L3X37gQMYT9KOyv77v3E/l+3hoSkh5jb2NFrSrOrJz4LcVsipKals6xc5Gs3nGIJymplC5mS9P3PPH59GOt+5j8zZdMX/UnA6atwMhIRR03FxZ835siJsYvedSC8ar3vsmT/TUn/AgN3aF1u2bNvuTAAe1vfPWNWgpjVOqcNoKIfKVSqdiyZctrTyX9OhYW5fMmkILSMtKVjiD+w0ih9py8lCl/7oTIVtIR/Zjf+VXsGw1SOkKeePLkumKP/W6ZD/Lsvo7f3p9n91WQZMRYCCGEEELk+KA5QySFsRBCCCGEkB5jpDAudOTTmhBCCCGEMqQwFkIIIYQQMjiHFMZCCCGEEAJppQA5wYcQQgghhBCAjBgLIYQQQghkHmOQwlgIIYQQQiBzvYO0UgghhBBCCAHIiLEQQgghhEBaKUAKYyGEEEIIgbRSgLRSCCGEEEIIAciIsRBCCCGEQFopQApjIYQQQgiBtFKAFMYGKy0jXekIb6yIsWE8PdMN4HchRF4zUqmUjpAnVAayH6U+HKZ0hDcWv/U7pSMIA2AYlYcQQgghhHgj0kohhbEQQgghhEBaKUBmpRBCCCGEEAKQEWMhhBBCCIG0UoAUxkIIIYQQAlCrM5WOoDhppRBCCCGEEAIZMRZCCCGEEECmtFJIYSyEEEIIIUAts1JIK4UQQgghhBAgI8ZCCCGEEAJppQApjIUQQgghBNJKAdJKIYQQQgghBCCFcaFz7do1VCoVYWFhSkcRQgghxFskU63Os4u+ksJYRx999BGDBw9WOoaiRo4YwJHDQTy4f5HbN8+wedNSqlSpqHSs12rY8D02bVpKVFQoT55cp23bZpp1JiYmTJ78PceP7+TevQiiokJZsmQWjo4OCiZ+va/79uDUyd3cv/cP9+/9w4H9f9C8eWOlY+XYmB+GkppyU+tyNnyf0rFyTF9fGy/6X6N6bN2yghvXTpKeeot27ZorHSnHDOE5ZWRkxLhxw7n4zyESHlwm4sJBRo0apHSs1xo6rB97Q7ZwM+YMkVdDWb12IZUqu2jW29vbMm3GOE6c2s2duPOcizjAT9PHYmNTVLHMC7Ydo+bAeVqXTyevBCAx+SlTN4XQfvJK6g37hRbjlvPTphAePUnRuo8Xb19z4Dx2nLykxO68MXUe/tNX0mOcR9RqNRkZGZiYGO5/6Qf/q8+CBQGcOBn2rKCc+D3bg9bgWeMjHj9+onS8l7KysuTs2QgCAzewfv0irXWWlhbUrOnB1KlzCQ+PwN7elhkzxrFx41IaNWqrUOLXu3krhv8b7Udk5FVUKhXdu3/Ob5uX8e57zblwQb/+IJ8//w8tWnbWXE9PT1cwTe7o62vjRVZWloSHX2D5inVs3rhU6Ti5pu/PqeHD+9PXpzt9+gzhQsQlateuzuJFM3mY+JCff1mudLyXatioHosXreLUqXBMjI0ZO344W34PoF7d5jx+/ITSjqVwdHTgh9F+XPwnknJOZZntPwlHRwd6dBugWO6KjsX49dtPNdeNjZ6NGcYlJhOXmMzQ9o2oULoYMQ8eMnn9PuISk5nRu5XWfUzo2pSGbk6a69YWZgWSXeQ9w63i8tBXX31FSEgIISEhzJkzB4Dly5fTs2dPtm3bxg8//MDZs2fZtWsXK1asICEhga1bt2puP3jwYMLCwti3bx8AmZmZzJgxg0WLFhEdHU2pUqX4+uuvGT16dJbHzsjIwMfHh8OHD7Nr1y6cnJyybFNQWrftpnW9V5/B3Ll9ljq1q3Pg4DGFUr3erl372LVrX7brHj58RJs22vs1ZMhYDh78k3LlyhAdfbsAEuZcUNBuretjx/7E1327U++92npXGKenZ3D3bpzSMd6Ivr42XrRj51527NyrdIw3pu/PqQb16/DnX7vYvmMPANev3+TLL9pT992aygZ7jc869NS6/k2/EURdO07NWh4cPnSciAuX6N71W836q1dvMGniTBYtmYmxsTEZGRkFHRl4VgiXsLHKsrxSmeLM/E8BXK6kLQPa1Gd04C7SMzIxMf73S3drC9Ns70PfyMF3UhjrZM6cOVy6dAkPDw8mTpwIwPnz5wH4/vvvmTFjBhUqVMDe3l6n+xs1ahSLFy9m9uzZNGrUiJiYGP75558s26WkpNC5c2euXbvGgQMHKFmyZN7tVB6wtbUBIP5BgrJB8piNjTWZmZkkJDxUOopOjIyM6NixDVZWlhw9dlLpODlWqZIL166e4GlKCseOnuKHMX6F9gOJrgz1taEv9P05deToSXr37kLlSi5cjryKp6cb77//LiNGTlQ6Wo7Y2lgD8OBB4ku3sbGx5tGjJMWKYoAbcQl88sMyTIsYU925NAPbvo9jMetst016kkpRc1OtohjAb2MIE9fuoWxxGz5v6En7+m6oVKqCiJ+nZLo2KYx1Ymtri6mpKZaWlpQuXRpAU8hOnDiRTz75ROf7evToEXPmzGH+/Pl4e3sDULFiRRo1aqS1XVJSEq1btyYlJYW9e/dia2v70vtMSUkhJUW750mtVufri1KlUjFrxgQOHQrl/PmL+fY4Bc3MzIzJk0exYcMfPHqUpHScV/LwqMqB/X9gbm5GUlIyHT/vQ0TEZaVj5Ujo8dP06TOES5eiKO3owA+jh7An+Ddq1W5CUlKy0vFyxVBfG/rCEJ5T06f/jI11UcLD95GRkYGxsTFjx01j3bqtSkfTmUqlwu+nHzhy+AQRL/kWq1hxe74bOYAVy9cXcLp/eTqXYmLXpjg72HPvYTILt4fSa85mNo3qgpW5qda2D5KesHjncbwaemgt79+qHu9WeQeLIkU48s8Npmzcx+PUNLp8WKMgd0XkESmM31DdunVztH1ERAQpKSk0adLkldt17tyZd955hz179mBhYfHKbf38/JgwYYLWMpVRUVTGNjnKlhPz5k6hWjVXPmzcId8eo6CZmJiwatXPqFQqBg7M2tZS2Fy8eIW67zbD1sYar89as2ypP02afqZXxfHO/3xtf/ZcBKGhp4m8fJSOHduyYsU6BZPlniG+NvSJITynOnZsS6fOHejh7cuFC5eoUcOdGdPHExNzl1WrNikdTyczZ0/Azb0KLT75Mtv11tZF2bhpCRf/icTvxzkFnO5fjdydNT9XKVsCj/KlaTV+BbtOX6ZDg2qadUlPUvH99U8qlLanX8v3tO6jb4t/r1ctV5InqWkEBJ/Sy8JYWilkVoo3ZmWl3VNkZGSU5YmVlpam+fl1Re5zrVq1Ijw8nCNHjrx221GjRpGYmKh1URll/zVQXpjjP5nWrZrStNnn3LoVk2+PU5BMTExYvfpnnJzK0qZN10I/WgzPnldXrlzj1Omz/PDDVMLDL+A7oI/Ssd5IYuJDLl+OolJFZ6Wj5Iohvjb0nT4+p/z8RjNj+i9s3PgH58//w5o1vzF33hJGfPft629cCEyfOY7mLT6mbauu3L59J8v6okWt2LxlOUlJyXTt3K9QHRxpY2mGk4Md0XH/tn8kP02l/4LfsTIrwqw+rSlibPzK+/BwLsXdhCRS05RrD8ktma5NCmOdmZqa6tQDVbJkSWJitN8Q/zsnceXKlbGwsCA4OPiV9/PNN98wdepU2rVrR0hIyCu3NTMzw8bGRuuSX20Uc/wn82n7FnzS/AuuXYvOl8coaM+L4ooVXWjduivx8QlKR8oVIyMjzMxMX79hIWZlZUmFCs7E3IlVOkqOGeJrwxDo43PK0sKCzMxMrWUZGRkYGRX+t+zpM8fRpm0z2rbuxvXrN7Ost7YuypbfV5CalkqnL/qSkpKqQMqXe5ySys17iZSwfTbolfQklW9++Z0iJsb4922DWZHXf9F+8eY9bCzNMC3y6gJaFE7SSqEjZ2dnjh07xrVr1yhatGiWP1rPffzxx0yfPp3AwEAaNGjAqlWrOHfuHLVq1QLA3NyckSNHMmLECExNTWnYsCFxcXGcP3+e3r17a92Xr68vGRkZtGnThu3bt2fpQy5o8+ZOoXOnT/H6rBePHiVRqtSzgwETEx/x9OlTRbO9ipWVJRX/M1rk7FyO6tXdefAggZiYWNasWUCtWh54efXC2NhYs1/x8Qlao/2FyeTJ37Njx16io29hbV2UTp0+5cMPG9CqdRelo+XI1Kk/EBT0Nzdu3MTRsRRjxw4jIyOD9eu3Kh0tR/T1tfEiKytLKlX6d95ZF2cnatSoRnz8A705eM0QnlNB2/5m5EhfoqNvcSHiEjVqeDBooA8BAcr14upi5uwJdPy8HV06fU3SoyQcHEoAz2b/efo0RVMUW1ha0LfPMKyti2Jt/WwO43v34l/6vpqfZm09yAfVXHAsZk1cYjILth/DWKWiRe0q/78o3srTtHR+7N6M5KepJD99VsjbF7XA2MiIkLNXuf/oMdWdS2NaxJij/0SzdPcJenxcq8D3JS9IKwWo1PK/oJNLly7h7e3NmTNnePLkiWa6tgcPHmBnZ6e17bhx4/j11195+vQpvXr1Ii0tjbNnz2pN1+bn58fixYu5ffs2jo6O9OvXj1GjRnHt2jVcXFw4ffo0NWvWBGDWrFmMHz+eHTt28P777+uU18S0bB7u/TPpqbeyXd6r9xACV27I88crYpw3n9v+97/67NqV9Q1l5cqNTJ7sz8WLh7K9XbNmX3LgwNE3fvz0jLz/mnDRrzNo3LgRjo4OJCY+4uzZCKbP+Jng4AN5/ljP5ce3EKtW/kyjRvUoXtyeuLh4Dh8OZey4aURFXc/zxwLy7eu9gn5t5JcPP2hA8N9Ze1gDAjfQu8+QPH0so3z6Vqugn1P58booWtSK8eOG0659CxxKliAm5i7rN/zOjz/659uHdXOTN/+2KTHpSrbLv/l6BGtWb6bR/+oRtH1Nttt4un/AjRvZv450dWdzzp+jI1fs4FTkbRKSn2Bf1IJaFcswoHUDypW05fjlm/jM25Lt7YLGeVO2uA2HLlxn7p+Hib6XiFr9bEq3Lxp54tWgGkZGuXtuWDRXbk5n26J5d2Kilz0fCjspjA1UfhTGBS2vCmOl5UdhrAR9nHroRfrc92Zo8qswLmiG8LqAvCmMlZabwrgwksJYWYZReQghhBBCiDciY6VSGAshhBBCCORbNZBZKYQQQgghhABkxFgIIYQQQgBqOSW0FMZCCCGEEEJaKUBaKYQQQgghhABkxFgIIYQQQiCzUoAUxkIIIYQQAukxBmmlEEIIIYQQApARYyGEEEIIgbRSgIwYCyGEEEIInhXGeXXJjZ9//hlnZ2fMzc2pV68eoaGhebyHryeFsRBCCCGEUNT69esZOnQo48aN49SpU9SoUYPmzZsTGxtboDmkMBZCCCGEEKjz8JKSksLDhw+1LikpKS997FmzZuHj40PPnj1xd3dn4cKFWFpasmzZsvza3eyphciFp0+fqseNG6d++vSp0lFyzRD2Qa02jP0whH1Qq2U/ChND2Ae12jD2wxD2Qa02nP0oKOPGjctSL48bNy7bbVNSUtTGxsbqLVu2aC3v0aOHul27dvkf9j9UarV0Wouce/jwIba2tiQmJmJjY6N0nFwxhH0Aw9gPQ9gHkP0oTAxhH8Aw9sMQ9gEMZz8KSkpKSpYRYjMzM8zMzLJse/v2bcqWLcvhw4dp0KCBZvmIESMICQnh2LFj+Z73OZmVQgghhBBC5KmXFcGFnfQYCyGEEEIIxZQoUQJjY2Pu3r2rtfzu3buULl26QLNIYSyEEEIIIRRjampKnTp1CA4O1izLzMwkODhYq7WiIEgrhcgVMzMzxo0bp5dfkzxnCPsAhrEfhrAPIPtRmBjCPoBh7Ich7AMYzn4UVkOHDsXb25u6devy3nvv4e/vT3JyMj179izQHHLwnRBCCCGEUNz8+fOZPn06d+7coWbNmsydO5d69eoVaAYpjIUQQgghhEB6jIUQQgghhACkMBZCCCGEEAKQwlgIIYQQQghACmMhhBBCCCEAKYyFECLX0tLS6NWrF1evXlU6ihBCiDwghbHIkdTUVC5evEh6errSUXLtwIEDdOvWjQYNGnDr1i0AVq5cycGDBxVO9nYJDAwkJSUly/LU1FQCAwMVSJRzRYoUYfPmzUrHEKJQunjxIgMGDKBJkyY0adKEAQMGcPHiRaVj6ezmzZsvXXf06NECTCIKkkzXJnTy+PFjfH19CQgIAODSpUtUqFABX19fypYty/fff69wQt1s3ryZ7t2707VrV1auXMmFCxeoUKEC8+fPZ9u2bWzbtk3piG8NY2NjYmJicHBw0Fp+//59HBwcyMjIUChZznh7e1OzZk2GDBmidJRcs7e3R6VSZVmuUqkwNzenUqVKfPXVVwU+0X5ODR06NNvl/92P9u3bU6xYsQJOlnMrV65k4cKFXL16lSNHjlC+fHn8/f1xcXGhffv2Ssd7rc2bN9OpUyfq1q2rOXPZ0aNHOX78OOvWreOzzz5TOOHrubu7c/DgwSzPl0OHDtG6dWsSEhKUCSbylZz5Tuhk1KhRnDlzhn379tGiRQvN8qZNmzJ+/Hi9KYwnT57MwoUL6dGjB+vWrdMsb9iwIZMnT1Yw2evVqlUr2+IlO6dOncrnNG9OrVZnuz83b97E1tZWgUS5U7lyZSZOnMihQ4eoU6cOVlZWWusHDhyoUDLdjR07lh9//JGWLVvy3nvvARAaGsqOHTv49ttvuXr1Kt988w3p6en4+PgonPblTp8+zalTp8jIyMDV1RV49iHe2NiYqlWr8ssvvzBs2DAOHjyIu7u7wmlfbsGCBYwdO5bBgwfz448/aj4k2tnZ4e/vrxeF8YgRIxg1ahQTJ07UWj5u3DhGjBihF4Vx/fr1adasGXv37sXa2hqA/fv307ZtW8aPH69sOJFvZMRY6KR8+fKsX7+e+vXrY21tzZkzZ6hQoQKRkZHUrl2bhw8fKh1RJ5aWlly4cAFnZ2et/YiKisLd3Z2nT58qHfGlJkyYoPn56dOn/PLLL7i7u2uNxpw/f57+/fvj5+enVMzXel7gnzlzhmrVqmFi8u/n84yMDK5evUqLFi3YsGGDgil15+Li8tJ1KpWKqKioAkyTO5999hmffPIJ/fr101r+66+/smvXLjZv3sy8efNYtGgRZ8+eVSjl6/n7+3PgwAGWL1+OjY0NAImJifTp04dGjRrh4+NDly5dePLkCTt37lQ47cu5u7szZcoUPv30U62/U+fOneOjjz7i3r17Skd8LUtLS8LDw6lUqZLW8suXL1OjRg0eP36sUDLdZWZm0rFjR+Lj49m5cyeHDx+mXbt2TJ48mUGDBikdT+QTGTEWOomLi8vylTdAcnKyzqOYhUHp0qWJjIzE2dlZa/nBgwepUKGCMqF0NG7cOM3Pffr0YeDAgUyaNCnLNtHR0QUdLUc+/fRTAMLCwmjevDlFixbVrDM1NcXZ2VkvRpOeM4QD73bu3MlPP/2UZXmTJk0YNmwYAK1atSr03wxNnz6d3bt3a4piAFtbW8aPH0+zZs0YNGgQY8eOpVmzZgqmfL2rV69Sq1atLMvNzMxITk5WIFHOffTRRxw4cCBLYXzw4EH+97//KZQqZ4yMjFi3bh2tW7fm448/Jjw8HD8/PwYMGKB0NJGPpDAWOqlbty5BQUH4+voCaIrhJUuWaEYs9YGPjw+DBg1i2bJlqFQqbt++zZEjRxg+fDhjxoxROp7ONm7cyIkTJ7Is79atG3Xr1mXZsmUKpNLN8wLf2dmZL7/8EnNzc4UT5Y3U1FSuXr1KxYoVtUbB9UGxYsX4888/s/RJ//nnn5r+yuTkZM3XyYVVYmIisbGxWdok4uLiNN9q2dnZkZqaqkQ8nbm4uBAWFkb58uW1lu/YsQM3NzeFUuVMu3btGDlyJCdPnqR+/frAs2+1Nm7cyIQJE/jjjz+0ti0swsPDsywbP348nTt3plu3bnzwwQeabapXr17Q8URBUAuhgwMHDqiLFi2q7tevn9rc3Fw9aNAg9SeffKK2srJSnzhxQul4OsvMzFRPnjxZbWVlpVapVGqVSqU2NzdX//DDD0pHy5FSpUqply9fnmX58uXL1Q4ODgUf6C2WnJys7tWrl9rY2FhtbGysvnLlilqtVqsHDBig9vPzUzidbhYtWqQ2NjZWt23bVj1p0iT1pEmT1O3atVObmJiolyxZolar1eoZM2aov/jiC4WTvlqXLl3ULi4u6t9++00dHR2tjo6OVv/222/qChUqqLt166ZWq9XqtWvXquvUqaNw0ldbvHixumzZsup169aprays1GvXrtX83Vq7dq3S8XTy/O/r6y5GRkZKR9XyPNOLGV/8ubDlFnlHeoyFzq5cucLUqVM5c+YMSUlJ1K5dm5EjR+Lp6al0tBxLTU0lMjKSpKQk3N3dtb7O1wdTp05lwoQJ+Pj4aA6WOnbsGMuWLWPMmDGF/itveNZPPHv2bDZs2MCNGzeyjOLFx8crlCxnBg0axKFDh/D396dFixaEh4dToUIFfv/9d8aPH8/p06eVjqiTQ4cOMX/+fM10Wq6urvj6+vL+++8rnEx3SUlJDBkyhMDAQM2UkiYmJnh7ezN79mysrKwICwsDoGbNmsoF1cHq1asZP348V65cAaBMmTJMmDCB3r17K5zMsF2/fl3nbV8c0ReGQQpjIfTUhg0bmDNnDhEREQC4ubkxaNAgvvjiC4WT6Wbs2LEsWbKEYcOG8cMPPzB69GiuXbvG1q1bGTt2rF7M5gCGc2CqIUlKStIc9FihQgW9++D7X48fPyYpKSnbYzyEEHlPvxrhhKIyMzOJjIwkNjaWzMxMrXUffPCBQqlez8vLS+dtf/vtt3xMkjfS09OZMmUKvXr10psiODurV69m8eLFtG7dWtPDV7FiRapXr87Ro0f1pjA2lANTMzIy2Lp1q+aDVrVq1WjXrh3GxsYKJ8u5okWLanqj9bEofvLkCWq1GktLSywtLYmLi8Pf3x93d/dCfeDg3Llz6du3L+bm5sydO/eV2+rD69vPz49SpUrRq1cvreXLli0jLi6OkSNHKpRM5CcZMRY6OXr0KF26dOH69eu8+JRRqVSF+mQMOTkpwfLly/MxSd4pWrQo586dyzK7hj6xsrIiIiICJycnHB0dCQoKonbt2kRFRVGrVi0SExOVjqiTDz74gM8//xxfX1+sra0JDw/HxcUFX19fLl++zI4dO5SO+FqRkZG0atWKW7duaeb/vXjxIuXKlSMoKIiKFSsqnFA3mZmZTJ48mZkzZ5KUlASAtbU1w4YNY/To0RgZ6cfJXps1a4aXlxf9+vUjISEBV1dXTE1NuXfvHrNmzeKbb75ROmK2XFxcOHHiBMWLFzeIaQydnZ1Zs2ZNlnaiY8eO0alTJ4OYkUZkJSPGQif9+vXTzEzh6OioVyNh+lLs5kSTJk0ICQnR68L4nXfeISYmBicnJypWrMiuXbuoXbs2x48fx8zMTOl4OpsyZQotW7bkwoULpKenM2fOHC5cuMDhw4cJCQlROp5OBg4cSMWKFTl69KhmpPX+/ft069aNgQMHEhQUpHBC3YwePZqlS5cydepUGjZsCDybHmz8+PE8ffqUH3/8UeGEujl16hSzZ88GYNOmTZQuXZrTp0+zefNmxo4dW2gL4/8WioZQNN65cwdHR8csy0uWLElMTIwCiURBkMJY6OTy5cts2rQpy5yUQhktW7bk+++/5+zZs9meba0wTX/0Mh06dCA4OJh69erh6+tLt27dWLp0KTdu3NCr0ys3atSIsLAwpk6diqenp6bAP3LkiN4cmBoSEqJVFAMUL15cq8DUBwEBASxZskTr+V+9enXKli1L//799aYwfvz4sWZqvF27duHl5YWRkRH169fP0cFh4s2UK1eOQ4cOZRn9PnToEGXKlFEolchvUhgLndSrV4/IyEi9LIxr165NcHAw9vb2rz2tsj6cShmgf//+AMyaNSvLusLe2vLc1KlTNT9/+eWXlC9fnsOHD1O5cmXatm2rYLKcq1ixIosXL1Y6Rq6ZmZnx6NGjLMuTkpIwNTVVIFHuxMfHU7Vq1SzLq1atqjeznABUqlSJrVu30qFDB3bu3Kn5oBgbG6t18pLCLCMjgxUrVhAcHJztcSl79uxRKJnufHx8GDx4MGlpaXz88ccABAcHM2LECM2Jb4ThkcJY6MTX15dhw4Zx584dPD09KVKkiNb6wjzRefv27TVfzT8/65q+e/FNRh+9eGBL/fr1qV+/PsuWLeOnn37SqwNbrly5wvLly4mKisLf3x8HBwe2b9+Ok5MT1apVUzrea7Vp04a+ffuydOlSren/+vXrpxffPjxXo0YN5s+fn+XAr/nz51OjRg2FUuXc2LFj6dKlC0OGDKFJkyaakyjt2rUr2zPiFUaDBg1ixYoVtG7dGg8PD71qv3vuu+++4/79+/Tv318znaS5uTkjR45k1KhRCqcT+UUOvhM6ye6gFZVKhVqt1psRSlG4GMqBLSEhIbRs2ZKGDRuyf/9+IiIiqFChAlOnTuXEiRNs2rRJ6YivlZCQgLe3N3/++afmQ29aWhrt27dn+fLl2NnZKRtQRyEhIbRu3RonJydNMXnkyBGio6PZtm2b3pyKGJ71t8bExFCjRg3N39/Q0FBsbGyyHRUvbEqUKEFgYCCtWrVSOsobS0pKIiIiAgsLCypXrqxXx0CInJPCWOjkdX1t+jbR+YkTJzTTUrm7u1OnTh2FE72eoU2FZG5uTkRERJb+vaioKNzd3Xn69KlCyXKmQYMGfP755wwdOlRrHuPQ0FC8vLy4efOm0hF1FhkZqTUvtj62Tt2+fZuff/6Zf/75B3i2H/3799ebntC0tDQsLCwICwvDw8ND6Ti5VqZMGfbt20eVKlWUjiJEjkhhLN4qN2/epHPnzhw6dEgzCpaQkMD777/PunXreOedd5QN+AqGNhVS5cqVGTduHN26ddNavnLlSsaNG6cX+wDPps47e/YsLi4uWoXxtWvXqFq1aqEt8IcOHarzttn1shc2aWlptGjRgoULF1K5cmWl47yRChUqsGXLFr1q/3jRzJkziYqKYv78+XrZRgHQuHHjV2bXhz5pkXPSYyxy5MKFC9mevldf+hD79OlDWloaERERWvO19uzZkz59+hTqOWdfNhXS88+2+vbmYygHttjZ2RETE5Plw8rp06cpW7asQqle78VTVZ86dYr09HTN6+LSpUsYGxvrxbcpAEWKFCE8PFzpGHli9OjR/N///R8rV67UmimksHvxZEp79uxh+/btVKtWLctxKfpwMqUXTxuelpZGWFgY586dw9vbW5lQIt9JYSx0EhUVRYcOHTh79qymtxj+Lcb0pcc4JCSEw4cPa978AVxdXZk3b55e9R8CLF26lNmzZ3P58mXg2Qjs4MGD6dOnj8LJdGMoB7Z06tSJkSNHsnHjRlQqFZmZmRw6dIjhw4fTo0cPpeO91N69ezU/z5o1C2trawICArC3twfgwYMH9OzZU69eF8+n/PvvjCf6aP78+URGRlKmTBnKly+fZTrGwjp7jq2trdb1Dh06KJQkbzyfS/pF48eP15xARhgeaaUQOmnbti3GxsYsWbIEFxcXQkNDuX//PsOGDWPGjBl68+ZZpUoVVq1apTny/rnQ0FC6dOlCZGSkQslyZuzYscyaNQtfX1+tg4zmz5/PkCFDmDhxosIJdafvB7akpqby7bffsmLFCjIyMjAxMSE9PZ2uXbuyYsUKvTilctmyZdm1a1eWGTTOnTtHs2bNuH37tkLJcsbX15fAwEAqV66c7fze+tASAjBhwoRXrh83blwBJcm9J0+ekJmZqfkdXLt2ja1bt+Lm5kbz5s0VTvdmIiMjee+99/RqCkChOymMhU5KlCjBnj17qF69Ora2toSGhuLq6sqePXsYNmxYlq9lC6vff/+dKVOm8PPPP1O3bl3g2YF4vr6+jBw5Um+mcytZsiRz586lc+fOWsvXrl2Lr68v9+7dUyjZ2ys6OpqzZ8+SlJRErVq19KrP1dramj///JOPPvpIa/nevXtp165dtnMcFxbh4eF4eHhgZGRE48aNX7qdSqWSntAC9OJpratWrUqRIkUK/WmtdbFy5UpGjhypNx8YRc5IK4XQSUZGhuZMTCVKlOD27du4urpSvnx5Ll68qHC6V7O3t9fqv01OTqZevXqYmDx7+qenp2NiYkKvXr30pjBOS0vTFPb/VadOHdLT0xVI9HZ53YFrR48e1fysD6OUHTp0oGfPnsycOVNrHuPvvvsuS99oYVOrVi1iYmJwcHDg+vXrHD9+nOLFiysdK0+cPHlSM0tItWrV9GYOY8h6WutSpUrpxWmt/+vF575arSYmJoYTJ04wZswYhVKJ/CaFsdCJh4cHZ86cwcXFhXr16jFt2jRMTU1ZtGgRFSpUUDreK/n7+ysdIc91796dBQsWZCm6Fi1aRNeuXRVK9fYwtAPXFi5cyPDhw+nSpQtpaWkAmJiY0Lt3b6ZPn65wulezs7Pj6tWrODg4cO3aNYM4+U1sbCydOnVi3759WrPnNG7cmHXr1lGyZEllA+rAEE5r/WLPtJGREa6urkycOJFmzZoplErkN2mlEDrZuXMnycnJeHl5ERkZSZs2bbh06RLFixdn/fr1mlkFRP757yhleno6K1aswMnJifr16wPPRvhu3LhBjx49mDdvnlIx3zqzZs1i3759Lz1wTZ9m2EhOTubKlSvAs9Ncv9ijWxj17duXwMBAHB0duXHjBu+8885L+7r1ZQrAL7/8kqioKAIDA3FzcwOezQjk7e1NpUqVWLt2rcIJX6969er06dOHDh064OHhwY4dO2jQoAEnT56kdevW3LlzR+mIr5SRkcGhQ4fw9PTUvK7F20EKY5Fr8fHxWdoU9EFGRgZbt27V+oqyXbt2hf4gqVf1T/6X9FIWLEM5cE2f7dixg8jISAYOHMjEiRM1I5UvGjRoUAEnyx1bW1v+/vtv3n33Xa3loaGhNGvWjISEBGWC5cCmTZvo0qULGRkZNGnShF27dgHPTgW/f/9+tm/frnDC13vZSYiEYZNWCpFr+jS/5nORkZG0atWKW7duab729vPzo1y5cgQFBVGxYkWFE77cf6fXEoXHw4cPiYuLy7I8Li6uUB+0ZkhatGgBPOvJHTRo0EsLY32RmZmZZd5feDZXs760inTs2JFGjRppTmv9XJMmTfRmGjcPDw+ioqKkMH7LyIixeKmcHHSjD5O1A7Rq1Qq1Ws3q1as1hf39+/fp1q0bRkZGBAUFKZxQ6JsePXpw4MCBbA9c+9///kdAQIDCCYW+ad++PQkJCaxdu1ZzKutbt27RtWtX7O3t2bJli8IJ3w47duxg1KhRTJo0Kdvp/2xsbBRKJvKTFMbipXr27KnztsuXL8/HJHnHysqKo0eP4unpqbX8zJkzNGzYUCZtFzn2+PFjhg8fzrJly7I9cE0f+nRF4RIdHU27du04f/485cqVA+DGjRt4enryxx9/FOpT1xsSIyMjzc//bRlUq9WoVCq9ObGVyBkpjMVbpVixYvz111+8//77WssPHTpE27ZtZcJ2kWv6eOCaKLzUajXBwcGaYyHc3Nxo2rSpwqneLgEBAZQrVy7L8SeZmZncuHFDTgttoKQwFjkSGxurmbfY1dUVBwcHhRPlTI8ePTh16hRLly7V+trbx8eHOnXqsGLFCmUDCiEEEBwcTHBwMLGxsVn6ipctW6ZQqreLsbGxZo7s/7p//z4ODg4yYmygjF6/iRDPDjDq3r07ZcuW5cMPP+TDDz+kbNmydOvWjcTERKXj6Wzu3LlUrFiRBg0aYG5ujrm5OQ0bNqRSpUrMmTNH6XhCCMGECRNo1qwZwcHB3Lt3jwcPHmhdRMF43jLxoqSkJMzNzRVIJAqCjBgLnXz55ZecPn2aefPm0aBBAwCOHDnCoEGDqFmzJuvWrVM4Yc5cvnyZf/75B3j2FWWlSpUUTiSEEM84Ojoybdo0unfvrnSUt9LzOePnzJmDj48PlpaWmnUZGRkcO3YMY2NjDh06pFREkY+kMBY6sbKyYufOnTRq1Ehr+YEDB2jRogXJyckKJRNCCMNSvHhxQkNDC/X0kYbs+ZzxISEhNGjQAFNTU806U1NTnJ2dGT58OJUrV1YqoshHMo+x0Enx4sWznB4Tnk1Er09nBVKr1WzatIm9e/dm27unL9POCSEMV58+fVizZg1jxoxROspb6fmc8T179mTOnDkyLdtbRkaMhU4WLVrExo0bWblyJaVLlwbgzp07eHt74+Xlxddff61wQt0MGjSIX3/9lcaNG1OqVKks/WP6Mu2cEMKw/PeU75mZmQQEBFC9enWqV6+e5WQfs2bNKuh4Qrw1pDAWOqlVqxaRkZGkpKTg5OQEPJtX08zMLMvXSadOnVIiok6KFSvGqlWraNWqldJRhBBCQ075LkThIK0UQieffvqp0hHyhK2tLRUqVFA6hhBCaJFTvgtROMiIsXitjIwMDh06RPXq1bGzs1M6zhsJCAhgx44dLFu2DAsLC6XjCCGEEKIQkcJY6MTc3JyIiAhcXFyUjvJGnjx5QocOHTh06BDOzs5ZevcKcxuIEEIIIfKXtFIInXh4eBAVFaX3hbG3tzcnT56kW7du2R58J4QQQoi3l4wYC53s2LGDUaNGMWnSJOrUqYOVlZXWen2ZzuZl8zELIYQQQkhhLHRiZPTv2cP/O8r6/JSZ+nLO+KpVq7JhwwaqV6+udBQhhBBCFDLSSiF0YihHTM+cOZMRI0awcOFCnJ2dlY4jhBBCiEJERozFW8Xe3p7Hjx+Tnp6OpaVlloPv4uPjFUomhBBCCKXJiLF4qfDwcDw8PDAyMiI8PPyV2+pLa4K/v7/SEYQQQghRSMmIsXgpIyMj7ty5g4ODA0ZGRqhUKrJ7uuhTj7EQQgghxMvIiLF4qatXr1KyZEnNz4YiIyODrVu3EhERAUC1atVo164dxsbGCicTQgghhJJkxFjkyIULF7hx4wapqamaZSqVirZt2yqYSneRkZG0atWKW7du4erqCsDFixcpV64cQUFBVKxYUeGEQgghhFCKFMZCJ1FRUXTo0IGzZ89qtVQ8n7pNX1opWrVqhVqtZvXq1RQrVgyA+/fv061bN4yMjAgKClI4oRBCCCGUYvT6TYSAQYMG4eLiQmxsLJaWlpw7d479+/dTt25d9u3bp3Q8nYWEhDBt2jRNUQxQvHhxpk6dSkhIiILJhBBCCKE06TEWOjly5Ah79uyhRIkSGBkZYWxsTKNGjfDz82PgwIGcPn1a6Yg6MTMz49GjR1mWJyUlYWpqqkAiIYQQQhQWMmIsdJKRkYG1tTUAJUqU4Pbt2wCUL1+eixcvKhktR9q0aUPfvn05duwYarUatVrN0aNH6devH+3atVM6nhBCCCEUJCPGQiceHh6cOXMGFxcX6tWrx7Rp0zA1NWXRokVUqFBB6Xg6mzt3Lt7e3jRo0EBzco/09HTatWsncxwLIYQQbzk5+E7oZOfOnSQnJ+Pl5UVkZCRt2rTh0qVLFC9enPXr1/Pxxx8rHTFHIiMjNdO1ubm5UalSJYUTCSGEEEJpUhiLXIuPj8fe3l4zM4U+mDhxIsOHD8fS0lJr+ZMnT5g+fTpjx45VKJkQQgghlCaFsXirGBsbExMTg4ODg9by+/fv4+DgoDfTzgkhhBAi78nBd+Ktolarsx3hPnPmjNYUbkIIIYR4+8jBd+Kt8LzlQ6VSUaVKFa3iOCMjg6SkJPr166dgQiGEEEIoTVopxFshICAAtVpNr1698Pf3x9bWVrPO1NQUZ2dnGjRooGBCIYQQQihNCmPxVgkJCeH999/XTNUmhBBCCPGcFMbirXLjxo1XrndyciqgJEIIIYQobKQwFm8VIyOjV04vJ7NSCCGEEG8vOfhOvFVOnz6tdT0tLY3Tp08za9YsfvzxR4VSCSGEEKIwkBFjIYCgoCCmT5/Ovn37lI4ihBBCCIXIPMZCAK6urhw/flzpGEIIIYRQkLRSiLfKw4cPta6r1WpiYmIYP348lStXViiVEEIIIQoDKYzFW8XOzi7LwXdqtZpy5cqxbt06hVIJIYQQojCQHmPxVgkJCdG6bmRkRMmSJalUqRImJvI5UQghhHibSWEs3koXLlzgxo0bpKamai1v166dQomEEEIIoTQZIhNvlaioKLy8vAgPD0elUvH8c+Hz9gqZx1gIIYR4e8msFOKtMmjQIJydnYmNjcXS0pJz586xf/9+6tatK1O1CSGEEG85aaUQb5USJUqwZ88eqlevjq2tLaGhobi6urJnzx6GDRuW5QQgQgghhHh7yIixeKtkZGRgbW0NPCuSb9++DUD58uW5ePGiktGEEEIIoTDpMRZvFQ8PD86cOYOLiwv16tVj2rRpmJqasmjRIipUqKB0PCGEEEIoSFopxFtl586dJCcn4+XlRWRkJG3atOHSpUsUL16c9evX8/HHHysdUQghhBAKkcJYvPXi4+Oxt7fPcuIPIYQQQrxdpDAWQgghhBACOfhOCCGEEEIIQApjIYQQQgghACmMhRBCCCGEAKQwFkIIIYQQApDCWAghCq2vvvqKTz/9VHP9o48+YvDgwQWeY9++fahUKhISEgr8sYUQoiBJYSyEEDn01VdfoVKpUKlUmJqaUqlSJSZOnEh6enq+Pu5vv/3GpEmTdNpWilkhhMg5OfOdEELkQosWLVi+fDkpKSls27aNb7/9liJFijBq1Cit7VJTUzE1Nc2TxyxWrFie3I8QQojsyYixEELkgpmZGaVLl6Z8+fJ88803NG3alD/++EPT/vDjjz9SpkwZXF1dAYiOjuaLL77Azs6OYsWK0b59e65du6a5v4yMDIYOHYqdnR3FixdnxIgRvDjN/IutFCkpKYwcOZJy5cphZmZGpUqVWLp0KdeuXaNx48YAmpPXfPXVVwBkZmbi5+eHi4sLFhYW1KhRg02bNmk9zrZt26hSpQoWFhY0btxYK6cQQhgyKYyFECIPWFhYkJqaCkBwcDAXL15k9+7d/PXXX6SlpdG8eXOsra05cOAAhw4domjRorRo0UJzm5kzZ7JixQqWLVvGwYMHiY+PZ8uWLa98zB49erB27Vrmzp1LREQEv/76K0WLFqVcuXJs3rwZgIsXLxITE8OcOXMA8PPzIzAwkIULF3L+/HmGDBlCt27dCAkJAZ4V8F5eXrRt25awsDD69OnD999/n1//bUIIUahIK4UQQrwBtVpNcHAwO3fuxNfXl7i4OKysrFiyZImmhWLVqlVkZmayZMkSzanHly9fjp2dHfv27aNZs2b4+/szatQovLy8AFi4cCE7d+586eNeunSJDRs2sHv3bpo2bQpAhQoVNOuft104ODhgZ2cHPBthnjJlCn///TcNGjTQ3ObgwYP8+uuvfPjhhyxYsICKFSsyc+ZMAFxdXTl79iw//fRTHv6vCSFE4SSFsRBC5MJff/1F0aJFSUtLIzMzky5dujB+/Hi+/fZbPD09tfqKz5w5Q2RkJNbW1lr38fTpU65cuUJiYiIxMTHUq1dPs87ExIS6detmaad4LiwsDGNjYz788EOdM0dGRvL48WM++eQTreWpqanUqlULgIiICK0cgKaIFkIIQyeFsRBC5ELjxo1ZsGABpqamlClTBhOTf/+cWllZaW2blJREnTp1WL16dZb7KVmyZK4e38LCIse3SUpKAiAoKIiyZctqrTMzM8tVDiGEMCRSGAshRC5YWVlRqVIlnbatXbs269evx8HBARsbm2y3cXR05NixY3zwwQcApKenc/LkSWrXrp3t9p6enmRmZhISEqJppfiv5yPWGRkZmmXu7u6YmZlx48aNl440u7m58ccff2gtO3r06Ot3UgghDIAcfCeEEPmsa9eulChRgvbt23PgwAGuXr3Kvn37GDhwIDdv3gRg0KBBTJ06la1bt/LPP//Qv3//V85B7OzsjLe3N7169WLr1q2a+9ywYQMA5cuXR6VS8ddffxEXF0dSUhLW1tYMHz6cIUOGEBAQwJUrVzh16hTz5s0jICAAgH79+nH58mW+++47Ll68yJo1a1ixYkV+/xcJIUShIIWxEELkM0tLS/bv34+TkxNeXl64ubnRu3dvnj59qhlBHjZsGN27d8fb25sGDRpgbW1Nhw4dXnm/CxYsoGPHjvTv35+qVavi4+NDcnIyAGXLlmXChAl8//33lCpVigEDBgAwadIkxowZg5+fH25ubrRo0YKgoCBcXFwAcHJyYvPmzWzdupUaNWqwcOFCpkyZko//O0IIUXio1C87skMIIYQQQoi3iIwYCyGEEEIIgRTGQgghhBBCAFIYCyGEEEIIAUhhLIQQQgghBCCFsRBCCCGEEIAUxkIIIYQQQgBSGAshhBBCCAFIYSyEEEIIIQQghbEQQgghhBCAFMZCCCGEEEIAUhgLIYQQQggBwP8D54REuU9LErcAAAAASUVORK5CYII=\n"},"metadata":{}}]}]}