Newer
Older
import numpy as np
import json
from inputs import Input
from MMAE.mmae import MMAE
from System.system_simulator import SystemSimulator
from plots import mmae_simulator_simulation_and_plot
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def __init__(self, λ, λs, k, b, dt, H, Q, R, x0, true_system_noisy, estimator_noisy, max_time, max_steps, amplitude):
# Synthetic system simulator initialization
self.TrueSystem = SystemSimulator(λ, k, b, dt, H, Q, R, x0, true_system_noisy)
# Input initialization
self.input_signal = Input(self.TrueSystem.model, max_time).step_function(max_steps, amplitude)
# MMAE initialization
self.MMAE = MMAE(λs, k, b, dt, H, Q, R, x0, estimator_noisy)
def update(self, t: int) -> float:
u = self.input_signal[t, :].reshape(-1, 1)
_, z = self.TrueSystem.update(u)
λ_hat = self.MMAE.update(u, z)
return λ_hat
# Load configuration from JSON file
def load_config(config_path):
with open(config_path, 'r') as f:
return json.load(f)
if __name__ == "__main__":
config_path = "config.json"
config = load_config(config_path)
start = config["model_variants_start"]
end = config["model_variants_end"]
step = config["model_variants_step"]
# Generate model variants
λs = np.arange(start, end + step, step).tolist()
λ = config['true_mass']
k = config['k']
b = config['b']
dt = config["dt"]
H = np.array(config["H"])
Q = np.eye(H.shape[1]) * config["Q"]
R = np.eye(H.shape[0]) * config["R"]
x0 = np.array(config["initial_state"])
max_time = config['max_time']
max_steps = int(config['max_time'] / dt)
amplitude = config['amplitude']
MMAESimulator = MMAESimulator(λ, λs, k, b, dt, H, Q, R, x0, True, False, max_time, max_steps, amplitude)
mmae_simulator_simulation_and_plot(MMAESimulator, max_steps, dt)