From c6daabcc8b898dc6256d59f1db981d3b31035517 Mon Sep 17 00:00:00 2001 From: "oceanpdoshi@g.ucla.edu" <oceanpdoshi@.ucla.edu> Date: Tue, 14 May 2019 23:40:32 -0700 Subject: [PATCH] Added random data generator Currently testing communication --- CoLo-AT/dataset_manager/data_generator.py | 54 +++++++++++++++---- .../simulated_dataset_manager.py | 17 ++++-- CoLo-AT/test_simulation_sagar.py | 32 ++++++----- 3 files changed, 77 insertions(+), 26 deletions(-) diff --git a/CoLo-AT/dataset_manager/data_generator.py b/CoLo-AT/dataset_manager/data_generator.py index 182bcd5..207210c 100644 --- a/CoLo-AT/dataset_manager/data_generator.py +++ b/CoLo-AT/dataset_manager/data_generator.py @@ -2,6 +2,7 @@ import numpy as np from math import pi, sqrt, atan2, hypot, sin, cos import matplotlib.pyplot as plt +# TODO - add collision/boundary checking for circle/random data class DataGenerator(): def __init__(self, boundary, landmarks, duration, robot_labels, starting_states, start_time, delta_t, velocity_noise = 0, angular_velocity_noise = 0, measurement_range_noise = 0, bearing_noise = 0, communication_noise = 0, @@ -86,8 +87,6 @@ class DataGenerator(): # Generates simulated of robots moving in a circle def generate_circular_data(self, test): - # TODO - add boundary, collision checking - # NOTE - this method of generating a circular path goes from polygons (low duration) to rounder as duration increases path_radius = self.boundary/(self.num_robots + 3) path_circumference = 2*pi*path_radius @@ -112,7 +111,7 @@ class DataGenerator(): # Converts all orientations to be between pi and pi if (next_orientation > pi or next_orientation < -pi): - next_orientation = self.converge_to_bearing_range(next_orientation) + next_orientation = self.converge_to_angle_range(next_orientation) self.groundtruth_data[i].append({'time' : self.time_arr['groundtruth'][i][time_idx], 'x_pos': next_x, 'y_pos': next_y, 'orientation': next_orientation}) @@ -127,6 +126,43 @@ class DataGenerator(): return self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data + # Inputs: None + # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data + # Generates simulated of robots moving randomly + def generate_random_data(self, test): + + # Generate ground truth data + for i, label in enumerate(self.robot_labels, 0): + # append starting state + self.groundtruth_data[i].append({'time' : self.starting_states[label][0], 'x_pos': self.starting_states[label][1], 'y_pos': self.starting_states[label][2], 'orientation' : self.starting_states[label][3]}) + for time_idx in range(1, len(self.time_arr['groundtruth'][i])): + + curr_x = self.groundtruth_data[i][time_idx-1]['x_pos'] + curr_y = self.groundtruth_data[i][time_idx-1]['y_pos'] + curr_orientation = self.groundtruth_data[i][time_idx-1]['orientation'] + + # rotate some random number of radians between pi/4 and -pi/4 + next_orientation = curr_orientation + np.random.uniform(-pi/3, pi/3) + next_orientation = self.converge_to_angle_range(next_orientation) + rand_dist = np.random.uniform(0, 0.5) # units of distance change are in + next_x = curr_x + rand_dist*cos(next_orientation) + next_y = curr_y + rand_dist*sin(next_orientation) + + self.groundtruth_data[i].append({'time' : self.time_arr['groundtruth'][i][time_idx], 'x_pos': next_x, 'y_pos': next_y, 'orientation': next_orientation}) + + self.generate_odometry_data() + self.generate_measurement_data() + + self.dataset_data = {'odometry': self.odometry_data, 'measurement': self.measurement_data, 'groundtruth': self.groundtruth_data} + + if (test): + self.verify_generated_data() + + return self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data + + # Inputs: None + # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data + # Generates simulated data for robots moving completely randomly (within realism) def generate_odometry_data(self): for i, label in enumerate(self.robot_labels, 0): # Initial robot state @@ -144,7 +180,7 @@ class DataGenerator(): self.odometry_data[i].append({'time': self.time_arr['odometry'][i][time_idx], 'velocity' : velocity, 'angular velocity' : angular_velocity, 'orientation' : self.groundtruth_data[i][time_idx]['orientation'], 'delta_t' : self.delta_t}) - # TODO - add relative robot measurements + def generate_measurement_data(self): # Generate Measurement Data for robot_idx, label in enumerate(self.robot_labels, 0): @@ -167,7 +203,7 @@ class DataGenerator(): measurement_range = self.calc_distance(robot_loc, other_robot_loc) + np.random.normal(loc=0.0,scale=self.measurement_range_noise) bearing = atan2((other_robot_loc[1]-robot_loc[1]), (other_robot_loc[0]-robot_loc[0])) + np.random.normal(loc=0.0,scale=self.bearing_noise) # global coordinates bearing = bearing - robot_orientation # NOTE - local = global - orientation, all between 0 and 2*pi - bearing = self.converge_to_bearing_range(bearing) + bearing = self.converge_to_angle_range(bearing) self.measurement_data[robot_idx].append({'time': time, 'subject_ID': robotID, 'measurment_range':measurement_range, 'bearing':bearing}) time_arr.append(time) # we expect repeats/skipped times in time array @@ -178,7 +214,7 @@ class DataGenerator(): measurement_range = self.calc_distance(robot_loc, landmark_loc) + np.random.normal(loc=0.0,scale=self.measurement_range_noise) bearing = atan2((landmark_loc[1]-robot_loc[1]), (landmark_loc[0]-robot_loc[0])) + np.random.normal(loc=0.0,scale=self.bearing_noise) # global coordinates bearing = bearing - robot_orientation # NOTE - local = global - orientation, all between 0 and 2*pi - bearing = self.converge_to_bearing_range(bearing) + bearing = self.converge_to_angle_range(bearing) self.measurement_data[robot_idx].append({'time': time, 'subject_ID': landmarkID, 'measurment_range':measurement_range, 'bearing':bearing}) time_arr.append(time) # we expect repeats/skipped times in time array @@ -237,7 +273,7 @@ class DataGenerator(): actual_meas = self.calc_distance(curr_loc, landmark_loc) generated_measurement = measurement['measurment_range'] - actual_bearing = self.converge_to_bearing_range(atan2(landmark_loc[1]- y2, landmark_loc[0]-x2) - actual_o) # global - orientation = local, -pi to pi + actual_bearing = self.converge_to_angle_range(atan2(landmark_loc[1]- y2, landmark_loc[0]-x2) - actual_o) # global - orientation = local, -pi to pi generated_bearing = measurement['bearing'] meas_diff = actual_meas - generated_measurement @@ -253,7 +289,7 @@ class DataGenerator(): actual_meas = self.calc_distance(curr_loc, other_robot_loc) generated_measurement = measurement['measurment_range'] - actual_bearing = self.converge_to_bearing_range(atan2(other_robot_loc[1]- y2, other_robot_loc[0]-x2) - actual_o) # global - orientation = local, -pi to pi + actual_bearing = self.converge_to_angle_range(atan2(other_robot_loc[1]- y2, other_robot_loc[0]-x2) - actual_o) # global - orientation = local, -pi to pi generated_bearing = measurement['bearing'] meas_diff = actual_meas - generated_measurement @@ -331,7 +367,7 @@ class DataGenerator(): return abs(bearing) <= robot_fov/2 # get angle between -pi and pi - def converge_to_bearing_range(self, theta): + def converge_to_angle_range(self, theta): while (theta < -pi): theta += 2*pi while (theta > pi): diff --git a/CoLo-AT/dataset_manager/simulated_dataset_manager.py b/CoLo-AT/dataset_manager/simulated_dataset_manager.py index 18ba1ab..e51247b 100644 --- a/CoLo-AT/dataset_manager/simulated_dataset_manager.py +++ b/CoLo-AT/dataset_manager/simulated_dataset_manager.py @@ -1,6 +1,8 @@ from math import pi import numpy as np +import IPython + # Import from other directories in repository import sys import os @@ -44,7 +46,7 @@ class SimulatedDataSetManager: raise Exception("Invalid landmark ID: landmark IDs must be bigger than 5.") # starting_states = {robot label: [time, x_pos, y_pos, orientation], ... } - # TODO - create a generate starting states function + # TODO - create a generate starting states function (potentially randomized to fit boundary) self.starting_states = {label : [self.start_time, -boundary + float(i+1)*boundary/self.num_robots, 0, 0.0] for i,label in enumerate(self.robot_labels)} # groundtruth & odometry are of fixed length=duration @@ -64,10 +66,13 @@ class SimulatedDataSetManager: if (path == 'line'): self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_straight_line_data(test) return self.start_time, self.starting_states, self.dataset_data, self.time_arr - # TODO elif(path=='circle'): self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_circular_data(test) return self.start_time, self.starting_states, self.dataset_data, self.time_arr + elif(path == 'random'): + self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_random_data(test) + self.measurement_data[0] = [] # TODO - to test simulated communication, trace of state variance should increase unless a communication update + return self.start_time, self.starting_states, self.dataset_data, self.time_arr else: raise Exception("Unsupported robot path specified.") @@ -92,10 +97,16 @@ class SimulatedDataSetManager: def get_time_arr(self, data_category): return self.time_arr[data_category] + # TODO - issues with simulation process communication module: + # issue appears to be time index is out of boutds def get_robot_groundtruth(self, gt_time, robot_index): - gt = self.groundtruth_data[robot_index][gt_time] + while (gt_time >= self.end_time): + gt_time -= self.delta_t + gt_index = np.where(gt_time == self.time_arr['groundtruth'][robot_index])[0][0] + gt = self.groundtruth_data[robot_index][gt_index] return gt + # Used to cycle through all robots in native simulation def reset_robot_ctr(self): if (self.curr_robot_idx > self.num_robots-1): self.curr_robot_idx = 0 diff --git a/CoLo-AT/test_simulation_sagar.py b/CoLo-AT/test_simulation_sagar.py index 4304428..54e066c 100644 --- a/CoLo-AT/test_simulation_sagar.py +++ b/CoLo-AT/test_simulation_sagar.py @@ -26,6 +26,9 @@ from data_analysis.realtime_plot import animate_plot from pprint import pprint # load algorithms +# NOTE +# GS = global state -> distributed system +# LS = localized state -> centralized system. sys.path.append(os.path.join(os.path.dirname(__file__), "localization_algos")) from centralized_ekf import Centralized_EKF # works from simple_ekf import Simple_EKF @@ -38,30 +41,31 @@ compname = getpass.getuser() #dataset_path = "/home/"+ compname +"/CoLo/CoLo-D/UTIAS-Datasets/MRCLAM_Dataset3/" # landmark IDs must be bigger than 5 -landmarks = {10: [0,5], 11: [3,3], 12: [-3,0], 13: [-3, -2] } +landmarks = {10: [0,5] , 11: [3,3], 12: [-3,0], 13: [-3, -2] } -robot_labels = [1] +robot_labels = [1,2] boundary = 5 # radius of circular map centered at 0,0 -duration = 150 # (seconds) - -# testing_dataset = SimulatedDataSetManager('testing', boundary, landmarks, duration, robot_labels, -# velocity_noise=0.01, angular_velocity_noise=0.01, measurement_range_noise=0.01, bearing_noise=0.01, robot_fov=2*pi) -# start_time, starting_states, dataset_data, time_arr = testing_dataset.simulate_dataset('circle', test=True) +duration = 45 # (seconds) +# NOTE - adjust noise if need to see drastic convergence/divergence +testing_dataset = SimulatedDataSetManager('testing', boundary, landmarks, duration, robot_labels, +velocity_noise=0.01, angular_velocity_noise=0.01, measurement_range_noise=0.01, bearing_noise=0.01, robot_fov=2*pi) +start_time, starting_states, dataset_data, time_arr = testing_dataset.simulate_dataset('random', test=False) # Real-World DataSet -dataset_path = "D:/LEMUR/CoLo/CoLo-D/CoLo-Datasets/official_dataset1/" -testing_dataset = RW_Dataset_Manager('testing') -start_time, starting_states, dataset_data, time_arr = testing_dataset.load_datasets(dataset_path, robot_labels, duration,delay_start=20) +# dataset_path = "D:/LEMUR/CoLo/CoLo-D/CoLo-Datasets/official_dataset1/" +# testing_dataset = RW_Dataset_Manager('testing') +# start_time, starting_states, dataset_data, time_arr = testing_dataset.load_datasets(dataset_path, robot_labels, duration,delay_start=20) analyzer = Analyzer('analyzer', robot_labels) -loc_algo = Simple_EKF('Simple_EKF') -robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = False) +loc_algo = EKF_GS_BOUND('EKF_GS_BOUND') +robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = True) sim = SimulationManager('sim') -state_recorder = StatesRecorder('Simple_EKF', robot_labels) +state_recorder = StatesRecorder('EKF_GS_BOUND', robot_labels) -sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder, simple_plot = False, comm=False, simulated_comm = False) +# TODO - 3 robots, but one CANNOT take measurements and must rely on communication, see if convergent. +sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder, simple_plot = False, comm=True, simulated_comm = True) loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder, plot_graphs = False) -- GitLab