diff --git a/CoLo-AT/dataset_manager/data_generator.py b/CoLo-AT/dataset_manager/data_generator.py index 0dee24728f69f14b9884809a81920dc907d1ee31..182bcd548c409399770798617a886baf3ae07512 100644 --- a/CoLo-AT/dataset_manager/data_generator.py +++ b/CoLo-AT/dataset_manager/data_generator.py @@ -2,7 +2,6 @@ import numpy as np from math import pi, sqrt, atan2, hypot, sin, cos import matplotlib.pyplot as plt - class DataGenerator(): def __init__(self, boundary, landmarks, duration, robot_labels, starting_states, start_time, delta_t, velocity_noise = 0, angular_velocity_noise = 0, measurement_range_noise = 0, bearing_noise = 0, communication_noise = 0, @@ -145,22 +144,36 @@ class DataGenerator(): self.odometry_data[i].append({'time': self.time_arr['odometry'][i][time_idx], 'velocity' : velocity, 'angular velocity' : angular_velocity, 'orientation' : self.groundtruth_data[i][time_idx]['orientation'], 'delta_t' : self.delta_t}) + # TODO - add relative robot measurements def generate_measurement_data(self): # Generate Measurement Data for robot_idx, label in enumerate(self.robot_labels, 0): # NOTE - time_arr is used to emplace a one-to-one index-to-time correspondence # between measurement_data and time_arr['measurement'] to account for varing number of landmark observations time_arr = [] - # iterate over all possible times and (potentially) observable landmarks for time_idx in range(0, len(self.time_arr['measurement'][robot_idx])): - for landmarkID, landmark_loc in self.landmark_map.items(): - - time = self.time_arr['measurement'][robot_idx][time_idx] - robot_loc_x = self.groundtruth_data[robot_idx][time_idx]['x_pos'] - robot_loc_y = self.groundtruth_data[robot_idx][time_idx]['y_pos'] - robot_orientation = self.groundtruth_data[robot_idx][time_idx]['orientation'] - robot_loc = [robot_loc_x, robot_loc_y] + + time = self.time_arr['measurement'][robot_idx][time_idx] + robot_loc_x = self.groundtruth_data[robot_idx][time_idx]['x_pos'] + robot_loc_y = self.groundtruth_data[robot_idx][time_idx]['y_pos'] + robot_orientation = self.groundtruth_data[robot_idx][time_idx]['orientation'] + robot_loc = [robot_loc_x, robot_loc_y] + + # Relative (other robots) observations + other_robot_locs = {label : [self.groundtruth_data[i][time_idx]['x_pos'], self.groundtruth_data[i][time_idx]['y_pos']] for i, label in enumerate(self.robot_labels, 0) if i != robot_idx } + for robotID, other_robot_loc in other_robot_locs.items(): + if (self.within_vision(self.robot_fov, robot_loc, other_robot_loc, robot_orientation)): + measurement_range = self.calc_distance(robot_loc, other_robot_loc) + np.random.normal(loc=0.0,scale=self.measurement_range_noise) + bearing = atan2((other_robot_loc[1]-robot_loc[1]), (other_robot_loc[0]-robot_loc[0])) + np.random.normal(loc=0.0,scale=self.bearing_noise) # global coordinates + bearing = bearing - robot_orientation # NOTE - local = global - orientation, all between 0 and 2*pi + bearing = self.converge_to_bearing_range(bearing) + self.measurement_data[robot_idx].append({'time': time, 'subject_ID': robotID, 'measurment_range':measurement_range, 'bearing':bearing}) + time_arr.append(time) # we expect repeats/skipped times in time array + + # Landmark (absolute) observations + for landmarkID, landmark_loc in self.landmark_map.items(): + if (self.within_vision(self.robot_fov, robot_loc, landmark_loc, robot_orientation)): measurement_range = self.calc_distance(robot_loc, landmark_loc) + np.random.normal(loc=0.0,scale=self.measurement_range_noise) bearing = atan2((landmark_loc[1]-robot_loc[1]), (landmark_loc[0]-robot_loc[0])) + np.random.normal(loc=0.0,scale=self.bearing_noise) # global coordinates @@ -217,18 +230,36 @@ class DataGenerator(): measurements = [measurement for measurement in measurement_list if measurement['time']==curr_time] curr_loc = [x2,y2] for measurement in measurements: - landmark_loc = self.landmark_map[measurement['subject_ID']] - - actual_meas = self.calc_distance(curr_loc, landmark_loc) - generated_measurement = measurement['measurment_range'] + # Verify a landmark measurement + if (measurement['subject_ID'] > 5): + landmark_loc = self.landmark_map[measurement['subject_ID']] + + actual_meas = self.calc_distance(curr_loc, landmark_loc) + generated_measurement = measurement['measurment_range'] + + actual_bearing = self.converge_to_bearing_range(atan2(landmark_loc[1]- y2, landmark_loc[0]-x2) - actual_o) # global - orientation = local, -pi to pi + generated_bearing = measurement['bearing'] + + meas_diff = actual_meas - generated_measurement + bearing_diff = actual_bearing - generated_bearing + + meas_test_arr[i].append({'meas_diff': meas_diff, 'bearing_diff': bearing_diff, 'time': curr_time}) + else: + other_robot_loc_x = self.groundtruth_data[self.robot_labels.index(measurement['subject_ID'])][g_idx]['x_pos'] + other_robot_loc_y = self.groundtruth_data[self.robot_labels.index(measurement['subject_ID'])][g_idx]['y_pos'] + + other_robot_loc = [other_robot_loc_x, other_robot_loc_y] + + actual_meas = self.calc_distance(curr_loc, other_robot_loc) + generated_measurement = measurement['measurment_range'] - actual_bearing = self.converge_to_bearing_range(atan2(landmark_loc[1]- y2, landmark_loc[0]-x2) - actual_o) # global - orientation = local, -pi to pi - generated_bearing = measurement['bearing'] + actual_bearing = self.converge_to_bearing_range(atan2(other_robot_loc[1]- y2, other_robot_loc[0]-x2) - actual_o) # global - orientation = local, -pi to pi + generated_bearing = measurement['bearing'] - meas_diff = actual_meas - generated_measurement - bearing_diff = actual_bearing - generated_bearing + meas_diff = actual_meas - generated_measurement + bearing_diff = actual_bearing - generated_bearing - meas_test_arr[i].append({'meas_diff': meas_diff, 'bearing_diff': bearing_diff, 'time': curr_time}) + meas_test_arr[i].append({'meas_diff': meas_diff, 'bearing_diff': bearing_diff, 'time': curr_time}) fig, ax_arr = plt.subplots(6) plt.xlabel('t [s]') @@ -292,15 +323,12 @@ class DataGenerator(): return distance # NOTE - add distance limitations to robot_vision? - # TODO - FIX THIS # Input: robot_loc, landmark_loc, [x,y] # Output: boolean, a given point is with the field of view (sector of a circle) of a robot def within_vision(self, robot_fov, robot_loc, landmark_loc, robot_orientation=0): - # between pi and -pi with respect to the x axis - bearing = atan2((landmark_loc[1]-robot_loc[1]),(landmark_loc[0]-robot_loc[0])) - if bearing < 0: - bearing += 2*pi - return True # bearing <= robot_fov/2 + robot_orientation and bearing >= robot_orientation - robot_fov/2 + # between pi and -pi with respect to LOCAL FRAME + bearing = atan2((landmark_loc[1]-robot_loc[1]),(landmark_loc[0]-robot_loc[0])) - robot_orientation + return abs(bearing) <= robot_fov/2 # get angle between -pi and pi def converge_to_bearing_range(self, theta): diff --git a/CoLo-AT/dataset_manager/simulated_dataset_manager.py b/CoLo-AT/dataset_manager/simulated_dataset_manager.py index 738f22c3646ae88c660d3d10d04139378d760c21..18ba1ab36ef07cab8503268104815ef8166c2d69 100644 --- a/CoLo-AT/dataset_manager/simulated_dataset_manager.py +++ b/CoLo-AT/dataset_manager/simulated_dataset_manager.py @@ -13,9 +13,8 @@ from dataset_manager.data_generator import DataGenerator # TODO -# - Circular path data in DataGenerator class -# - communication -# - relative observations +# communication +# scheduling class SimulatedDataSetManager: def __init__(self, dataset_name, boundary, landmarks, duration, robot_labels, diff --git a/CoLo-AT/simulation_process/data_generation.py b/CoLo-AT/simulation_process/data_generation.py deleted file mode 100644 index 033695bc4ec8995fa28c552feaaba47a4fbb0d80..0000000000000000000000000000000000000000 --- a/CoLo-AT/simulation_process/data_generation.py +++ /dev/null @@ -1,56 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Tue Feb 13 16:11:36 2018 - -@author: william -""" - -class DataGenerator(): - def init_(self): - pass - - def within_map(self, loc): - ''' - For runtime self_generated data, - Parameters: - loc: array, shape = (2,1) - robot's location for [x, y] - Return: Boolean - True if within the map, False if not - ''' - center_point = [0,0] - if sqrt(pow(loc[0]-center_point[0], 2)+pow(loc[1]-center_point[1], 2)) > d_max: - return False - else: - return True - def generate_propgation_data(self, current_loc, current_orientation): - - ''' - To generate propagtion data randomly so that it will run within predefined map *assuming orientation is perfect - Parameters: - current_loc: array, shape = (2,1) - robot's current location for [x, y] - current_orientation: float - robot's current orientation in radian - Return array, shape = (2,1) - ''' - [meas_v, meas_a_v] = [random.uniform(-max_v,max_v), random.uniform(-max_a_v, max_a_v)] - actual_v = meas_v + random.normal(0, sqrt(var_u_v)) - pre_update_position = [current_loc[0] + cos(current_orientation)*actual_v*delta_t, current_loc[1] + sin(current_orientation)*actual_v*delta_t] - - while(not within_map(pre_update_position)): - [meas_v, meas_a_v] = [random.uniform(-max_v,max_v), random.uniform(-max_a_v, max_a_v)] - actual_v = meas_v + random.normal(0, sqrt(var_u_v)) - pre_update_position = [current_loc[0] + cos(current_orientation)*actual_v*delta_t, current_loc[1] + sin(current_orientation)*actual_v*delta_t] - - orientation = current_orientation + meas_a_v*delta_t - actual_loc = pre_update_position - return [actual_v, meas_v, orientation, actual_loc] - - def generate_measurement_data(self, observer_loc, observee_loc, observer_orientation): - delta_x = observer_loc[0] - observee_loc[0] - delta_y = observer_loc[1] - observee_loc[1] - dis = sqrt(delta_y*delta_y + delta_x*delta_x) + random.normal(0, sqrt(var_dis)) - bearing = atan2(delta_y, delta_x) + random.normal(0, sqrt(var_angle)) - observer_orientation - return [dis, bearing]