From a29d59ea2c96d93b180c0cddada0bd118f7388a9 Mon Sep 17 00:00:00 2001
From: "oceanpdoshi@g.ucla.edu" <oceanpdoshi@.ucla.edu>
Date: Sun, 5 May 2019 22:37:07 -0700
Subject: [PATCH] Added data verification function to data_generator Small
 tweaks in parameter passing in simulated dm

---
 CoLo-AT/dataset_manager/data_generator.py     | 155 ++++++++++++++++--
 .../simulated_dataset_manager.py              |   9 +-
 CoLo-AT/test_simulation_sagar.py              |  54 ++----
 3 files changed, 158 insertions(+), 60 deletions(-)

diff --git a/CoLo-AT/dataset_manager/data_generator.py b/CoLo-AT/dataset_manager/data_generator.py
index fde0f4d..cd585f1 100644
--- a/CoLo-AT/dataset_manager/data_generator.py
+++ b/CoLo-AT/dataset_manager/data_generator.py
@@ -1,5 +1,7 @@
 import numpy as np
 from math import pi, sqrt, atan2, hypot, sin, cos
+import matplotlib.pyplot as plt
+
 
 class DataGenerator():
     def __init__(self, boundary, landmarks, duration, robot_labels, starting_states, start_time, delta_t,
@@ -45,7 +47,10 @@ class DataGenerator():
     # Inputs: None
     # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data
     # Generates simulated data based of robots moving in a straight line until simulation ends/robots hit the boundary and stop moving
-    def generate_straight_line_data(self):
+    def generate_straight_line_data(self, test):
+        
+        velocity_step = self.boundary/self.duration
+        move_step = velocity_step * self.delta_t
 
         # Generate ground truth data
         for i, label in enumerate(self.robot_labels, 0):
@@ -58,8 +63,11 @@ class DataGenerator():
 
                 next_orientation = curr_orientation
 
-                if (self.within_map([curr_x + 1, curr_y + 1])):
-                   next_x = curr_x + 1
+                next_x = curr_x
+                next_y = curr_y
+                
+                if (self.within_map([curr_x + move_step, curr_y])):
+                   next_x = curr_x + move_step
                    next_y = curr_y
                 
                 self.groundtruth_data[i].append({'time' : self.time_arr['groundtruth'][i][time_idx], 'x_pos': next_x, 'y_pos': next_y, 'orientation': next_orientation})
@@ -72,7 +80,7 @@ class DataGenerator():
             for time_idx in range(1, len(self.time_arr['odometry'][i])):
                 loc1 = [self.groundtruth_data[i][time_idx-1]['x_pos'], self.groundtruth_data[i][time_idx-1]['y_pos']]
                 loc2 = [self.groundtruth_data[i][time_idx]['x_pos'], self.groundtruth_data[i][time_idx]['y_pos']]
-                velocity = self.calc_distance(loc1, loc2)/self.delta_t + np.random.normal(loc=0.0,scale=self.velocity_noise)
+                velocity = self.calc_distance(loc1, loc2)/self.delta_t  + np.random.normal(loc=0.0,scale=self.velocity_noise)
                 
                 theta_1 = self.groundtruth_data[i][time_idx-1]['orientation']
                 theta_2 = self.groundtruth_data[i][time_idx]['orientation']
@@ -95,25 +103,30 @@ class DataGenerator():
                     robot_loc_y = self.groundtruth_data[robot_idx][time_idx]['y_pos']
                     robot_loc = [robot_loc_x, robot_loc_y]
                     
-                    if (self.within_vision(self.robot_fov, robot_loc, landmark_loc)):
+                    if (self.within_vision(self.robot_fov, robot_loc, landmark_loc, 0)):
                         measurement_range = self.calc_distance(robot_loc, landmark_loc) + np.random.normal(loc=0.0,scale=self.measurement_range_noise)
                         bearing = atan2((landmark_loc[1]-robot_loc[1]), (landmark_loc[0]-robot_loc[0])) + np.random.normal(loc=0.0,scale=self.bearing_noise)
+                        if (bearing < 0):
+                            bearing += 2*pi
                         self.measurement_data[robot_idx].append({'time': time, 'subject_ID': landmarkID, 'measurment_range':measurement_range, 'bearing':bearing})
                         time_arr.append(time) # we expect repeats/skipped times in time array
             self.time_arr['measurement'][robot_idx] = time_arr
         self.dataset_data = {'odometry': self.odometry_data, 'measurement': self.measurement_data, 'groundtruth': self.groundtruth_data}
         
+        if (test):
+            self.verify_generated_data()
+
         return self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data
 
     # Inputs: None
     # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data
     # Generates simulated of robots moving in a circle
-    def generate_circular_data(self):
+    def generate_circular_data(self, test):
 
         # TODO - add boundary, collision checking
 
         # NOTE - this method of generating a circular path goes from polygons (low duration) to rounder as duration increases
-        path_radius = self.boundary/self.num_robots
+        path_radius = self.boundary/(self.num_robots + 3)
         path_circumference = 2*pi*path_radius
 
         radian_step = 2*pi/self.duration
@@ -132,7 +145,8 @@ class DataGenerator():
 
                 next_x = curr_x + distance_step*cos(radian_step + curr_orientation)
                 next_y = curr_y + distance_step*sin(radian_step + curr_orientation)
-                next_orientation = curr_orientation + radian_step  # TODO - Check if orientaion is between 0 and 2pi
+                next_orientation = curr_orientation + radian_step  
+                
                 if (next_orientation > 2*pi): # later on we may have robots go in multiple loops
                     next_orientation -= 2*pi
                 
@@ -147,7 +161,7 @@ class DataGenerator():
                 loc1 = [self.groundtruth_data[i][time_idx-1]['x_pos'], self.groundtruth_data[i][time_idx-1]['y_pos']]
                 loc2 = [self.groundtruth_data[i][time_idx]['x_pos'], self.groundtruth_data[i][time_idx]['y_pos']]
                 velocity = self.calc_distance(loc1, loc2)/self.delta_t + np.random.normal(loc=0.0,scale=self.velocity_noise)
-                
+
                 theta_1 = self.groundtruth_data[i][time_idx-1]['orientation']
                 theta_2 = self.groundtruth_data[i][time_idx]['orientation']
                 angular_velocity = (theta_2-theta_1)/self.delta_t + np.random.normal(loc=0.0,scale=self.angular_velocity_noise)
@@ -167,25 +181,136 @@ class DataGenerator():
                     time = self.time_arr['measurement'][robot_idx][time_idx]
                     robot_loc_x = self.groundtruth_data[robot_idx][time_idx]['x_pos']
                     robot_loc_y = self.groundtruth_data[robot_idx][time_idx]['y_pos']
+                    robot_orientation = self.groundtruth_data[robot_idx][time_idx]['orientation']
                     robot_loc = [robot_loc_x, robot_loc_y]
                     
-                    if (self.within_vision(self.robot_fov, robot_loc, landmark_loc)):
+                    if (self.within_vision(self.robot_fov, robot_loc, landmark_loc, robot_orientation)):
                         measurement_range = self.calc_distance(robot_loc, landmark_loc) + np.random.normal(loc=0.0,scale=self.measurement_range_noise)
                         bearing = atan2((landmark_loc[1]-robot_loc[1]), (landmark_loc[0]-robot_loc[0])) + np.random.normal(loc=0.0,scale=self.bearing_noise)
+                        if (bearing < 0):
+                            bearing += 2*pi
                         self.measurement_data[robot_idx].append({'time': time, 'subject_ID': landmarkID, 'measurment_range':measurement_range, 'bearing':bearing})
                         time_arr.append(time) # we expect repeats/skipped times in time array
+            
             self.time_arr['measurement'][robot_idx] = time_arr
         self.dataset_data = {'odometry': self.odometry_data, 'measurement': self.measurement_data, 'groundtruth': self.groundtruth_data}
         
+        if (test):
+            self.verify_generated_data()
+
         return self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data
     
+    # Inputs: None
+    # Outputs: Verifies Generated Data
+    def verify_generated_data(self):
+        print('******Verifying Data******')
+
+        # Verify odometry data & measurement data
+        odo_test_arr = [[] for robot in self.robot_labels]
+        meas_test_arr = [[] for robot in self.robot_labels]
+        for i, robot in enumerate(self.robot_labels):
+            groundtruth_list = self.groundtruth_data[i]
+            odometry_list = self.odometry_data[i]
+            measurement_list = self.measurement_data[i]
+            for g_idx in range(1, len(groundtruth_list)):
+
+                t1 = groundtruth_list[g_idx-1]['time']
+                x1 = groundtruth_list[g_idx-1]['x_pos']
+                y1 = groundtruth_list[g_idx-1]['y_pos']
+                o1 = groundtruth_list[g_idx-1]['orientation']
+
+                t2 = groundtruth_list[g_idx]['time']
+                x2 = groundtruth_list[g_idx]['x_pos']
+                y2 = groundtruth_list[g_idx]['y_pos']
+                o2 = groundtruth_list[g_idx]['orientation']
+                
+                actual_delta_t = (t2-t1)
+                actual_v = self.calc_distance([x1,y1], [x2, y2])/actual_delta_t
+                actual_w = (o2-o1)/actual_delta_t
+                actual_o = o2
+
+                generated_v = odometry_list[g_idx]['velocity']
+                generated_w = odometry_list[g_idx]['angular velocity']
+                generated_o = odometry_list[g_idx]['orientation']
+                generated_delta_t = odometry_list[g_idx]['delta_t']
+
+                v_diff = actual_v - generated_v
+                w_diff = actual_w - generated_w
+                o_diff = actual_o - generated_o
+                delta_t_diff = actual_delta_t - generated_delta_t
+
+                odo_test_arr[i].append({'v_diff': v_diff, 'w_diff': w_diff, 'o_diff': o_diff, 'delta_t_diff': delta_t_diff, 'time': t2})
+
+                curr_time = t2
+
+                measurements = [measurement for measurement in measurement_list if measurement['time']==curr_time]
+                curr_loc = [x2,y2]
+                for measurement in measurements:
+                    landmark_loc = self.landmark_map[measurement['subject_ID']]
+                    
+                    actual_meas = self.calc_distance(curr_loc, landmark_loc)
+                    generated_measurement = measurement['measurment_range']
+
+                    actual_bearing = atan2(landmark_loc[1]- y2, landmark_loc[0]-x2)
+                    if (actual_bearing < 0):
+                        actual_bearing += 2*pi
+                    generated_bearing = measurement['bearing']
+
+                    meas_diff = actual_meas - generated_measurement
+                    bearing_diff = actual_bearing - generated_bearing
+
+                    meas_test_arr[i].append({'meas_diff': meas_diff, 'bearing_diff': bearing_diff, 'time': curr_time})
+
+        fig, ax_arr = plt.subplots(6) # TODO - change plotting code to accomodate measurement_range and bearing verification
+        plt.xlabel('t [s]')
+        plt.title('Odometry & Measurement Data Verification', position=(0.5,7))
+        ax_arr[0].set_ylabel('v_diff [m/s]')
+        ax_arr[1].set_ylabel('w_diff [r/s]')
+        ax_arr[2].set_ylabel('o_diff [r]')
+        ax_arr[3].set_ylabel('delta_t_diff [s]')
+        ax_arr[4].set_ylabel('meas_diff [m]')
+        ax_arr[5].set_ylabel('bearing_diff [r]')
+        
+        labels = ['robot1', 'robot2', 'robot3']
+
+        for diff_list in odo_test_arr:
+            v_diff_arr = [d['v_diff'] for d in diff_list]
+            w_diff_arr = [d['w_diff'] for d in diff_list]
+            o_diff_arr = [d['o_diff'] for d in diff_list]
+            delta_t_diff_arr = [d['delta_t_diff'] for d in diff_list]
+            time_arr = [d['time'] for d in diff_list]
+
+            ax_arr[0].plot(time_arr, v_diff_arr)
+            ax_arr[1].plot(time_arr, w_diff_arr)
+            ax_arr[2].plot(time_arr, o_diff_arr)
+            ax_arr[3].plot(time_arr, delta_t_diff_arr)
+
+        for diff_list in meas_test_arr:
+            meas_diff_arr = [d['meas_diff'] for d in diff_list]
+            bearing_diff_arr = [d['bearing_diff'] for d in diff_list]
+            meas_time_arr = [d['time'] for d in diff_list]
+
+            ax_arr[4].scatter(meas_time_arr, meas_diff_arr)
+            ax_arr[5].scatter(meas_time_arr, bearing_diff_arr)
+
+        fig.legend(labels, prop={'size': 12})
+        ax_arr[0].set_ylim([-10*self.velocity_noise, 10*self.velocity_noise])
+        ax_arr[1].set_ylim([-10*self.angular_velocity_noise, 10*self.angular_velocity_noise])
+        ax_arr[4].set_ylim([-10*self.measurement_range_noise, 10*self.measurement_range_noise])
+        ax_arr[5].set_ylim([-10*self.bearing_noise, 10*self.bearing_noise])
+        
+        plt.show()
+        plt.close('all')
+
+        print('******Verification Complete******')
+
     # Input: loc=[x,y]
     # Output: boolean if the point [x,y] is within the map
     def within_map(self, loc): 
         return hypot(loc[0], loc[1]) < self.boundary
 
     # Input: loc1=[x1,y1], loc2=[x2,y2]
-    # Output: distance between two points
+    # Output: Euclidean distance between two points
     def calc_distance(self, loc1, loc2):
 
         x1 = loc1[0]
@@ -197,13 +322,15 @@ class DataGenerator():
         distance = sqrt((x1-x2)**2 + (y1-y2)**2)
         return distance
 
-    # NOTE - add distance limitations to robot_vision
+    # NOTE - add distance limitations to robot_vision?
     # Input: robot_loc, landmark_loc, [x,y]
     # Output: boolean, a given point is with the field of view (sector of a circle) of a robot
-    def within_vision(self, robot_fov, robot_loc, landmark_loc):    
+    def within_vision(self, robot_fov, robot_loc, landmark_loc, robot_orientation=0):    
         # between pi and -pi with respect to the x axis
         bearing = atan2((landmark_loc[1]-robot_loc[1]),(landmark_loc[0]-robot_loc[0]))
-        return abs(bearing) <= robot_fov/2
+        if bearing < 0:
+            bearing += 2*pi
+        return bearing <= robot_fov/2 + robot_orientation and bearing >= robot_orientation - robot_fov/2
 
 # NOTE - Data formatting
 '''
diff --git a/CoLo-AT/dataset_manager/simulated_dataset_manager.py b/CoLo-AT/dataset_manager/simulated_dataset_manager.py
index 1df562e..738f22c 100644
--- a/CoLo-AT/dataset_manager/simulated_dataset_manager.py
+++ b/CoLo-AT/dataset_manager/simulated_dataset_manager.py
@@ -16,7 +16,6 @@ from dataset_manager.data_generator import DataGenerator
 # - Circular path data in DataGenerator class
 # - communication
 # - relative observations
-# - animated plots
 class SimulatedDataSetManager:
 
     def __init__(self, dataset_name, boundary, landmarks, duration, robot_labels,
@@ -47,7 +46,7 @@ class SimulatedDataSetManager:
 
         # starting_states =	{robot label: [time, x_pos, y_pos, orientation], ... }
         # TODO - create a generate starting states function
-        self.starting_states = {label : [self.start_time, -boundary + float(i+2)*boundary/self.num_robots, 0, 0.0] for i,label in enumerate(self.robot_labels)}
+        self.starting_states = {label : [self.start_time, -boundary + float(i+1)*boundary/self.num_robots, 0, 0.0] for i,label in enumerate(self.robot_labels)}
 
         # groundtruth & odometry are of fixed length=duration
         # measurement_data is of variable length
@@ -62,13 +61,13 @@ class SimulatedDataSetManager:
 
     # Input: robot_path (line, circle, etc.)
     # Output: Generates simulated data (gt, odo, meas)
-    def simulate_dataset(self, path='line'):
+    def simulate_dataset(self, path='line', test=False):
         if (path == 'line'):
-            self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_straight_line_data()
+            self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_straight_line_data(test)
             return self.start_time, self.starting_states, self.dataset_data, self.time_arr
         # TODO
         elif(path=='circle'):
-            self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_circular_data()
+            self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_circular_data(test)
             return self.start_time, self.starting_states, self.dataset_data, self.time_arr
         else:
             raise Exception("Unsupported robot path specified.")
diff --git a/CoLo-AT/test_simulation_sagar.py b/CoLo-AT/test_simulation_sagar.py
index d879ba1..9a250f4 100644
--- a/CoLo-AT/test_simulation_sagar.py
+++ b/CoLo-AT/test_simulation_sagar.py
@@ -38,62 +38,34 @@ compname = getpass.getuser()
 #dataset_path = "/home/"+ compname +"/CoLo/CoLo-D/UTIAS-Datasets/MRCLAM_Dataset3/"
 
 # landmark IDs must be bigger than 5
-landmarks = {10: [0, 2], 11: [25,0], 12: [0,25], 13: [-25,0], 14: [0, -25] }
+landmarks = {10: [0,5], 11: [3,3], 12: [-3,0], 13: [-3, -2] }
 
 robot_labels = [1,2,3]
-boundary = 25 # radius of circular map centered at 0,0
-duration = 120 # (seconds)
+boundary = 5 # radius of circular map centered at 0,0
+duration = 30 # (seconds)
 
-# NOTE - noise significantly affects the results
+# TODO - debug velocity_noise
 testing_dataset = SimulatedDataSetManager('testing', boundary, landmarks, duration, robot_labels, 
-velocity_noise=0.01, angular_velocity_noise=0.01, measurement_range_noise=0.01, bearing_noise=0.01, robot_fov=2*pi)
-start_time, starting_states, dataset_data, time_arr = testing_dataset.simulate_dataset('circle')
-
-robot_1_groundtruths = dataset_data['groundtruth'][0]
-robot_2_groundtruths = dataset_data['groundtruth'][1]
-robot_3_groundtruths = dataset_data['groundtruth'][2]
-
-landmark_x = [val[0] for key,val in landmarks.items()]
-landmark_y = [val[1] for key,val in landmarks.items()]
-
-x1_array = np.array([groundtruth['x_pos'] for groundtruth in robot_1_groundtruths])
-y1_array = np.array([groundtruth['y_pos'] for groundtruth in robot_1_groundtruths])
-
-x2_array = np.array([groundtruth['x_pos'] for groundtruth in robot_2_groundtruths])
-y2_array = np.array([groundtruth['y_pos'] for groundtruth in robot_2_groundtruths])
-
-x3_array = np.array([groundtruth['x_pos'] for groundtruth in robot_3_groundtruths])
-y3_array = np.array([groundtruth['y_pos'] for groundtruth in robot_3_groundtruths])
-
-boundary_circle = plt.Circle((0,0), boundary, color='#B9F1BA', label='boundary')
-plt.title('Robot Paths')
-plt.xlabel('x [m]')
-plt.ylabel('y [m]')
-plt.gcf().gca().add_artist(boundary_circle)
-plt.gcf().gca().set_xlim(-2*boundary, 2*boundary)
-plt.gcf().gca().set_ylim(-2*boundary, 2*boundary)
-plt.plot(x1_array, y1_array, label='Robot 1')
-plt.plot(x2_array, y2_array, label='Robot 2')
-plt.plot(x3_array, y3_array,  label='Robot 3')
-plt.plot(landmark_x, landmark_y, 'k.', label='Landmarks' )
-
-plt.legend(loc='best')
+velocity_noise=0.001, angular_velocity_noise=0.001, measurement_range_noise=0.001, bearing_noise=0.001, robot_fov=2*pi)
+start_time, starting_states, dataset_data, time_arr = testing_dataset.simulate_dataset('circle', test=True)
 
 # Real-World DataSet
 # dataset_path = "D:/LEMUR/CoLo/CoLo-D/CoLo-Datasets/official_dataset1/"
 # testing_dataset = RW_Dataset_Manager('testing')
 # start_time, starting_states, dataset_data, time_arr = testing_dataset.load_datasets(dataset_path, robot_labels, duration)
 
-
 analyzer = Analyzer('analyzer', robot_labels)
 
-loc_algo = Centralized_EKF('CentralizedEKF')
+loc_algo =  Centralized_EKF('Centralized_EKF')
 robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = False)
 
 sim = SimulationManager('sim')
-state_recorder_bda = StatesRecorder('CentralizedEKF', robot_labels)
+state_recorder = StatesRecorder('Centralized_EKF', robot_labels)
+
+sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder, simple_plot = False, comm=False, simulated_comm = False)
+
+loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder, plot_graphs = False)
 
-sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder_bda, simple_plot = True, comm=False, simulated_comm = False)
+animate_plot(robot_labels, state_recorder, analyzer, testing_dataset.get_landmark_map())
 
-# loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_bda, plot_graphs = True)
 
-- 
GitLab