From 66cc2c2188a6afd1e29a97ac01358fa29abb6698 Mon Sep 17 00:00:00 2001 From: "oceanpdoshi@g.ucla.edu" <oceanpdoshi@.ucla.edu> Date: Mon, 1 Jul 2019 17:08:08 -0700 Subject: [PATCH] Velocity is now a parameter for circle and line --- CoLo-AT/dataset_manager/data_generator.py | 50 ++++++++----------- .../simulated_dataset_manager.py | 9 ++-- 2 files changed, 26 insertions(+), 33 deletions(-) diff --git a/CoLo-AT/dataset_manager/data_generator.py b/CoLo-AT/dataset_manager/data_generator.py index 15105d1..1af1b6c 100644 --- a/CoLo-AT/dataset_manager/data_generator.py +++ b/CoLo-AT/dataset_manager/data_generator.py @@ -4,14 +4,13 @@ import matplotlib.pyplot as plt import IPython -# TODO - add collision/boundary checking for circle/random data +# TODO - add collision checking for circle/random data class DataGenerator(): - def __init__(self, boundary, landmarks, duration, robot_labels, starting_states, start_time, delta_t, + def __init__(self, landmarks, duration, robot_labels, starting_states, start_time, delta_t, velocity_noise = 0, angular_velocity_noise = 0, measurement_range_noise = 0, bearing_noise = 0, communication_noise = 0, robot_fov = 2*pi/3): self.duration = duration - self.boundary = boundary self.robot_labels = robot_labels self.num_robots = len(robot_labels) self.start_time = start_time @@ -49,11 +48,10 @@ class DataGenerator(): # Inputs: None # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data - # Generates simulated data based of robots moving in a straight line until simulation ends/robots hit the boundary and stop moving - def generate_straight_line_data(self, test): - - velocity_step = self.boundary/self.duration - move_step = velocity_step * self.delta_t + # Generates simulated data based of robots moving in a straight line until simulation ends + def generate_straight_line_data(self, test, velocity=0.1, velocity_spread=0): + + move_step = (velocity + np.random.normal(0, velocity_spread)) * self.delta_t # Generate ground truth data for i, label in enumerate(self.robot_labels, 0): @@ -69,9 +67,8 @@ class DataGenerator(): next_x = curr_x next_y = curr_y - if (self.within_map([curr_x + move_step, curr_y])): - next_x = curr_x + move_step - next_y = curr_y + next_x = curr_x + move_step + next_y = curr_y self.groundtruth_data[i].append({'time' : self.time_arr['groundtruth'][i][time_idx], 'x_pos': next_x, 'y_pos': next_y, 'orientation': next_orientation}) @@ -88,15 +85,11 @@ class DataGenerator(): # Inputs: None # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data # Generates simulated of robots moving in a circle - def generate_circular_data(self, test): - - # NOTE - this method of generating a circular path goes from polygons (low duration) to rounder as duration increases - path_radius = self.boundary/(self.num_robots + 3) - path_circumference = 2*pi*path_radius + def generate_circular_data(self, test, velocity=0.1, velocity_spread=0): radian_step = 2*pi/self.duration - velocity_step = path_circumference/self.duration # May want to randomize velocity w/normal distribution - distance_step = velocity_step*self.delta_t + # if it's a "perfect" circle, then velocity spread will be 0 + distance_step = (velocity + np.random.normal(0, velocity_spread))*self.delta_t # Generate ground truth data for i, label in enumerate(self.robot_labels, 0): @@ -129,9 +122,9 @@ class DataGenerator(): return self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data - # Inputs: None + # Inputs: test=True (run self.verify_generated_data), veloicty, velocity_spread (normally distributed) # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data - # Generates simulated of robots moving randomly + # Simulates random motion def generate_random_data(self, test, velocity, velocity_spread): # Generate ground truth data @@ -166,8 +159,8 @@ class DataGenerator(): return self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data # Inputs: None - # Outputs: time_arr, groundtruth_data, self.odometry_data, measurement_data, self.dataset_data - # Generates simulated data for robots moving completely randomly (within realism) + # Outputs: None + # For given robot groundtruths, use velocity = distance/time to generate odometry data def generate_odometry_data(self): for i, label in enumerate(self.robot_labels, 0): # Initial robot state @@ -188,7 +181,9 @@ class DataGenerator(): self.odometry_data[i].append({'time': self.time_arr['odometry'][i][time_idx], 'velocity' : velocity, 'angular velocity' : angular_velocity, 'orientation' : self.groundtruth_data[i][time_idx]['orientation'], 'delta_t' : (t2-t1)}) - + # Inputs: None + # Outputs: None + # for given robot groundtruths, robot_fov, and landmark map, generate all potential measurements at each time step def generate_measurement_data(self): # Generate Measurement Data for robot_idx, label in enumerate(self.robot_labels, 0): @@ -364,9 +359,9 @@ class DataGenerator(): print('******Verification Complete******') # Input: loc=[x,y] - # Output: boolean if the point [x,y] is within the map - def within_map(self, loc): - return hypot(loc[0], loc[1]) < self.boundary + # Output: boolean if the point [x,y] is within the circular map of radius r centered @ origin + def within_map(self, loc, r): + return hypot(loc[0], loc[1]) < r # Input: loc1=[x1,y1], loc2=[x2,y2] # Output: Euclidean distance between two points @@ -381,7 +376,6 @@ class DataGenerator(): distance = sqrt((x1-x2)**2 + (y1-y2)**2) return distance - # NOTE - add distance limitations to robot_vision? # Input: robot_loc, landmark_loc, [x,y] # Output: boolean, a given point is with the field of view (sector of a circle) of a robot def within_vision(self, robot_fov, robot_loc, landmark_loc, robot_orientation=0): @@ -421,7 +415,7 @@ Odometry Format Measurement Data Format -subject ID = Landmark ID +subject ID = Landmark ID/RobotID measurement_range = distance between robot and landmark bearing = angle betweeen robot and landmark, defined with respect to ROBOT'S FRAME OF REFERENCE { diff --git a/CoLo-AT/dataset_manager/simulated_dataset_manager.py b/CoLo-AT/dataset_manager/simulated_dataset_manager.py index 5aa76d0..702e82d 100644 --- a/CoLo-AT/dataset_manager/simulated_dataset_manager.py +++ b/CoLo-AT/dataset_manager/simulated_dataset_manager.py @@ -26,12 +26,11 @@ def find_nearest_time_idx(l, value): # scheduling class SimulatedDataSetManager: - def __init__(self, dataset_name, boundary, landmarks, duration, robot_labels, + def __init__(self, dataset_name, landmarks, duration, robot_labels, velocity_noise = 0, angular_velocity_noise = 0, measurement_range_noise = 0, bearing_noise = 0, communication_noise = 0, robot_fov = 2*pi, delta_t=1.0): self.name = dataset_name - self.boundary = float(boundary) self.duration = duration self.robot_labels = robot_labels self.num_robots = len(robot_labels) @@ -64,17 +63,17 @@ class SimulatedDataSetManager: self.measurement_data = [[] for robot in range(self.num_robots)] self.dataset_data = [] - self.generator = DataGenerator(boundary, landmarks, duration, robot_labels, self.starting_states, self.start_time, self.delta_t, + self.generator = DataGenerator(landmarks, duration, robot_labels, self.starting_states, self.start_time, self.delta_t, velocity_noise, angular_velocity_noise, measurement_range_noise, bearing_noise, communication_noise, robot_fov) # Input: robot_path (line, circle, etc.) # Output: Generates simulated data (gt, odo, meas) def simulate_dataset(self, path='random', test=False, velocity=1, velocity_spread = 0): if (path == 'line'): - self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_straight_line_data(test) + self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_straight_line_data(test, velocity, velocity_spread) return self.start_time, self.starting_states, self.dataset_data, self.time_arr elif(path=='circle'): - self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_circular_data(test) + self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_circular_data(test, velocity, velocity_spread) return self.start_time, self.starting_states, self.dataset_data, self.time_arr elif(path == 'random'): self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_random_data(test, velocity, velocity_spread) -- GitLab