diff --git a/CoLo-AT/Cooperative_Localization_Journal2_sim_data.py b/CoLo-AT/Cooperative_Localization_Journal2_sim_data.py index 23cdf34d3d0ad05ac6d13c4b8fefb675769fe30d..f792db76d69d4a07aa18cbd2014d32d59af12294 100644 --- a/CoLo-AT/Cooperative_Localization_Journal2_sim_data.py +++ b/CoLo-AT/Cooperative_Localization_Journal2_sim_data.py @@ -8,7 +8,7 @@ Created on Thu May 16 15:41:51 2019 import os, sys import getpass -from math import pi +from math import pi, sqrt sys.path.append(os.path.join(os.path.dirname(__file__), ".")) from dataset_manager.realworld_dataset_manager import RW_Dataset_Manager from dataset_manager.simulated_dataset_manager import SimulatedDataSetManager @@ -29,13 +29,14 @@ from ekf_gs_ci2 import EKF_GS_CI2 from gs_ci_bound import GS_CI_Bound from ekf_gs_sci2 import EKF_GS_SCI2 -landmarks = {10: [0,0] } +landmarks = {10: [0,5] , 11: [20,3], 12: [-30,0], 13: [-13, -12] } robot_labels = [1,2,3,4,5] -boundary = 200 -duration = 30 +boundary = 60 +duration = 180 testing_dataset = SimulatedDataSetManager('testing', boundary, landmarks, duration, robot_labels, -velocity_noise=0.0125, angular_velocity_noise=0.0, measurement_range_noise=0.1, bearing_noise=0.0349, robot_fov=2*pi) +velocity_noise=sqrt(0.0125), angular_velocity_noise=0.001, measurement_range_noise=sqrt(0.1), bearing_noise=sqrt(2)*pi/180, +robot_fov=2*pi, delta_t=0.2) start_time, starting_states, dataset_data, time_arr = testing_dataset.simulate_dataset('random', test=False) analyzer = Analyzer('analyzer', robot_labels) diff --git a/CoLo-AT/dataset_manager/data_generator.py b/CoLo-AT/dataset_manager/data_generator.py index 545703b429cb283d60a9256047e6ea279b49c11e..97985478045b95e08bfcbb7217857050cfc7c525 100644 --- a/CoLo-AT/dataset_manager/data_generator.py +++ b/CoLo-AT/dataset_manager/data_generator.py @@ -148,7 +148,7 @@ class DataGenerator(): # rotate some random number of radians between pi/3 and -pi/3 next_orientation = curr_orientation + np.random.uniform(-pi/3, pi/3) next_orientation = self.converge_to_angle_range(next_orientation) - rand_dist = 1 + np.random.normal(0, sqrt(0.25)) # units of distance change are in meters, if delta t is one second... v = m/s + rand_dist = (1 + np.random.normal(0, sqrt(0.25)))*self.delta_t # units of distance change are in meters, if delta t is one second... v = m/s next_x = curr_x + rand_dist*cos(next_orientation) next_y = curr_y + rand_dist*sin(next_orientation) @@ -175,14 +175,17 @@ class DataGenerator(): for time_idx in range(1, len(self.time_arr['odometry'][i])): loc1 = [self.groundtruth_data[i][time_idx-1]['x_pos'], self.groundtruth_data[i][time_idx-1]['y_pos']] loc2 = [self.groundtruth_data[i][time_idx]['x_pos'], self.groundtruth_data[i][time_idx]['y_pos']] - velocity = self.calc_distance(loc1, loc2)/self.delta_t + np.random.normal(loc=0.0,scale=self.velocity_noise) + t1 = self.groundtruth_data[i][time_idx-1]['time'] + t2 = self.groundtruth_data[i][time_idx]['time'] + + velocity = self.calc_distance(loc1, loc2)/(t2-t1) + np.random.normal(loc=0.0,scale=self.velocity_noise) theta_1 = self.groundtruth_data[i][time_idx-1]['orientation'] theta_2 = self.groundtruth_data[i][time_idx]['orientation'] - angular_velocity = (theta_2-theta_1)/self.delta_t + np.random.normal(loc=0.0,scale=self.angular_velocity_noise) + angular_velocity = (theta_2-theta_1)/(t2-t1) + np.random.normal(loc=0.0,scale=self.angular_velocity_noise) self.odometry_data[i].append({'time': self.time_arr['odometry'][i][time_idx], 'velocity' : velocity, 'angular velocity' : angular_velocity, - 'orientation' : self.groundtruth_data[i][time_idx]['orientation'], 'delta_t' : self.delta_t}) + 'orientation' : self.groundtruth_data[i][time_idx]['orientation'], 'delta_t' : (t2-t1)}) def generate_measurement_data(self): @@ -199,16 +202,16 @@ class DataGenerator(): robot_orientation = self.groundtruth_data[robot_idx][time_idx]['orientation'] robot_loc = [robot_loc_x, robot_loc_y] - # Relative (other robots) observations + # Relative (other robots) observations other_robot_locs = {label : [self.groundtruth_data[i][time_idx]['x_pos'], self.groundtruth_data[i][time_idx]['y_pos']] for i, label in enumerate(self.robot_labels, 0) if i != robot_idx } - for robotID, other_robot_loc in other_robot_locs.items(): + for robotidx, other_robot_loc in other_robot_locs.items(): if (self.within_vision(self.robot_fov, robot_loc, other_robot_loc, robot_orientation)): measurement_range = self.calc_distance(robot_loc, other_robot_loc) + np.random.normal(loc=0.0,scale=self.measurement_range_noise) bearing = atan2((other_robot_loc[1]-robot_loc[1]), (other_robot_loc[0]-robot_loc[0])) + np.random.normal(loc=0.0,scale=self.bearing_noise) # global coordinates bearing = bearing - robot_orientation # NOTE - local = global - orientation, all between 0 and 2*pi bearing = self.converge_to_angle_range(bearing) - self.measurement_data[robot_idx].append({'time': time, 'subject_ID': robotID, 'measurment_range':measurement_range, 'bearing':bearing}) + self.measurement_data[robot_idx].append({'time': time, 'subject_ID': self.robot_labels[robotidx], 'measurment_range':measurement_range, 'bearing':bearing}) time_arr.append(time) # we expect repeats/skipped times in time array # Landmark (absolute) observations @@ -281,7 +284,7 @@ class DataGenerator(): generated_bearing = measurement['bearing'] meas_diff = actual_meas - generated_measurement - bearing_diff = actual_bearing - generated_bearing + bearing_diff = abs(actual_bearing) - abs(generated_bearing) # double check for edge cases where both are approximately pi (one may be (-), the other may be positive if (abs(bearing_diff) > 1): @@ -301,7 +304,7 @@ class DataGenerator(): generated_bearing = measurement['bearing'] meas_diff = actual_meas - generated_measurement - bearing_diff = actual_bearing - generated_bearing + bearing_diff = abs(actual_bearing) - abs(generated_bearing) # double check for edge cases where both are approximately pi (one may be (-), the other may be positive if (abs(bearing_diff) > 1): @@ -309,15 +312,21 @@ class DataGenerator(): meas_test_arr[i].append({'meas_diff': meas_diff, 'bearing_diff': bearing_diff, 'time': curr_time}) - fig, ax_arr = plt.subplots(6) + fig, ax_arr = plt.subplots(8) plt.xlabel('t [s]') - plt.title('Odometry & Measurement Data Verification', position=(0.5,7)) - ax_arr[0].set_ylabel('v_diff [m/s]') - ax_arr[1].set_ylabel('w_diff [r/s]') - ax_arr[2].set_ylabel('o_diff [r]') - ax_arr[3].set_ylabel('delta_t_diff [s]') - ax_arr[4].set_ylabel('meas_diff [m]') - ax_arr[5].set_ylabel('bearing_diff [r]') + # plt.title('Odometry & Measurement Data Verification', position=(0.5,7)) + ax_arr[0].set_xlabel('v_diff [m/s]') + ax_arr[1].set_xlabel('w_diff [r/s]') + ax_arr[2].set_xlabel('o_diff [r]') + ax_arr[3].set_xlabel('delta_t_diff [s]') + ax_arr[4].set_xlabel('meas_diff [m]') + ax_arr[5].set_xlabel('bearing_diff [r]') + + ax_arr[6].set_xlabel('t') + ax_arr[7].set_xlabel('t') + + ax_arr[6].set_ylabel('meas_diff [m]') + ax_arr[7].set_ylabel('bearing_diff [r]') labels = ['robot{}'.format(i) for i, lablel in enumerate(self.robot_labels,1,)] @@ -326,29 +335,30 @@ class DataGenerator(): w_diff_arr = [d['w_diff'] for d in diff_list] o_diff_arr = [d['o_diff'] for d in diff_list] delta_t_diff_arr = [d['delta_t_diff'] for d in diff_list] - time_arr = [d['time'] for d in diff_list] + # time_arr = [d['time'] for d in diff_list] + + n_bins = 60 - ax_arr[0].plot(time_arr, v_diff_arr) - ax_arr[1].plot(time_arr, w_diff_arr) - ax_arr[2].plot(time_arr, o_diff_arr) - ax_arr[3].plot(time_arr, delta_t_diff_arr) + ax_arr[0].hist(v_diff_arr, n_bins) + ax_arr[1].hist(w_diff_arr, n_bins) + ax_arr[2].hist(o_diff_arr, n_bins) + ax_arr[3].hist(delta_t_diff_arr, n_bins) for diff_list in meas_test_arr: meas_diff_arr = [d['meas_diff'] for d in diff_list] bearing_diff_arr = [d['bearing_diff'] for d in diff_list] meas_time_arr = [d['time'] for d in diff_list] - ax_arr[4].scatter(meas_time_arr, meas_diff_arr) - ax_arr[5].scatter(meas_time_arr, bearing_diff_arr) + ax_arr[4].hist(meas_diff_arr, n_bins) + ax_arr[5].hist(bearing_diff_arr, n_bins) + + ax_arr[6].scatter(meas_time_arr, meas_diff_arr) + ax_arr[7].scatter(meas_time_arr, bearing_diff_arr) fig.legend(labels, prop={'size': 12}) - # ax_arr[0].set_ylim([-10*self.velocity_noise, 10*self.velocity_noise]) - # ax_arr[1].set_ylim([-10*self.angular_velocity_noise, 10*self.angular_velocity_noise]) - # ax_arr[4].set_ylim([-10*self.measurement_range_noise, 10*self.measurement_range_noise]) - # ax_arr[5].set_ylim([-10*self.bearing_noise, 10*self.bearing_noise]) - - plt.show() - plt.close('all') + plt.subplots_adjust(left=.07, bottom=.08, right=.94, top=.89, wspace=.2, hspace=.75) + # plt.show() + # plt.close('all') print('******Verification Complete******') diff --git a/CoLo-AT/dataset_manager/simulated_dataset_manager.py b/CoLo-AT/dataset_manager/simulated_dataset_manager.py index 6ac192579362de2e208d1a7fb83b59405f26cdcd..ec659335d8804b4e38a6c62a24ef4ca9fe304659 100644 --- a/CoLo-AT/dataset_manager/simulated_dataset_manager.py +++ b/CoLo-AT/dataset_manager/simulated_dataset_manager.py @@ -28,7 +28,7 @@ class SimulatedDataSetManager: def __init__(self, dataset_name, boundary, landmarks, duration, robot_labels, velocity_noise = 0, angular_velocity_noise = 0, measurement_range_noise = 0, bearing_noise = 0, communication_noise = 0, - robot_fov = 2*pi/3): + robot_fov = 2*pi/3, delta_t=1.0): self.name = dataset_name self.boundary = float(boundary) @@ -44,7 +44,7 @@ class SimulatedDataSetManager: self.curr_robot_idx = 0 # time step of the simulation (secs) TODO - user specified - self.delta_t = 1.0 + self.delta_t = delta_t # landmarks = {landmark ID: [x,y]} (m) self.landmark_map = landmarks @@ -69,7 +69,7 @@ class SimulatedDataSetManager: # Input: robot_path (line, circle, etc.) # Output: Generates simulated data (gt, odo, meas) - def simulate_dataset(self, path='line', test=False): + def simulate_dataset(self, path='random', test=False): if (path == 'line'): self.time_arr, self.groundtruth_data, self.odometry_data, self.measurement_data, self.dataset_data = self.generator.generate_straight_line_data(test) return self.start_time, self.starting_states, self.dataset_data, self.time_arr @@ -103,12 +103,9 @@ class SimulatedDataSetManager: def get_time_arr(self, data_category): return self.time_arr[data_category] - # TODO - issues with simulation process communication module: - # issue appears to be time index is out of boutds def get_robot_groundtruth(self, gt_time, robot_index): - while (gt_time >= self.end_time): - gt_time -= self.delta_t - gt_index = np.where(gt_time == self.time_arr['groundtruth'][robot_index])[0][0] + gt_time_arr = [ groundtruth['time'] for groundtruth in self.groundtruth_data[robot_index] ] + gt_index = find_nearest_time_idx(gt_time_arr, gt_time) gt = self.groundtruth_data[robot_index][gt_index] return gt @@ -133,9 +130,10 @@ class SimulatedDataSetManager: req.set_robot_idx(robot_idx) req.set_type(req_type) + + # TODO - perhaps this is the sourceo f the issue? if (req_type == 'measurement' and self.reset_robot_ctr()): current_time += self.delta_t - self.reset_robot_idx = False return valid_respond, current_time, req @@ -165,10 +163,9 @@ class SimulatedDataSetManager: message['robot_index'] = robot_idx # Past the total time of simulation or no further measurements - valid_dataline = current_time <= self.end_time + valid_dataline = current_time < self.end_time or (abs(current_time - self.end_time) < 0.001) # <= w/floats # Select message data - # NOTE - use difference rather than inequality because of float difficulties if valid_dataline: if req_type == 'odometry': odo_time_idx = find_nearest_time_idx(self.time_arr[req_type][robot_idx], current_time) @@ -202,5 +199,6 @@ class SimulatedDataSetManager: idx = measurement_indices[least_index] return self.measurement_data[robot_idx][idx] + # No measurement data available (ex: no landmarks in vision at given time) return {'time': current_time, 'subject_ID': None, 'measurment_range': None,'bearing': None} \ No newline at end of file