diff --git a/CoLo-AT/Cooperative_Localization_Journal1.py b/CoLo-AT/Cooperative_Localization_Journal1.py index d48eb2e4dfd0b8d56a5cf1509c215b3937bf08e2..445f809c2c53e4ba47c3faf0664abd28d61f274e 100644 --- a/CoLo-AT/Cooperative_Localization_Journal1.py +++ b/CoLo-AT/Cooperative_Localization_Journal1.py @@ -43,8 +43,6 @@ state_recorder = StatesRecorder('GS_CI', robot_labels) sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder, simple_plot = False) loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder, plot_graphs = True) -#animate_plot(robot_labels, state_recorder, analyzer, testing_dataset.get_landmark_map()) - ############################################################################## testing_dataset.dataset_reset() @@ -54,7 +52,7 @@ robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = True) sim = SimulationManager('sim gs_ci_bound') state_recorder_bound = StatesRecorder('GS_CI_bound', robot_labels, state_var_only = True) sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder_bound, simple_plot = False) -loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_bound, plot_graphs = True) +loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_bound, plot_graphs = False) ############################################################################## @@ -66,7 +64,7 @@ robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = False) sim = SimulationManager('sim cen_ekf') state_recorder_LS_cen = StatesRecorder('LS_cen', robot_labels) sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder_LS_cen, simple_plot = False) -loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_LS_cen, plot_graphs = True) +loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_LS_cen, plot_graphs = False) ############################################################################## @@ -77,7 +75,7 @@ robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = False) sim = SimulationManager('sim ls_bda') state_recorder_LS_BDA = StatesRecorder('LS_BDA', robot_labels) sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder_LS_BDA, simple_plot = False) -loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_LS_BDA, plot_graphs = True) +loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_LS_BDA, plot_graphs = False) ############################################################################## @@ -89,7 +87,7 @@ robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = False) sim = SimulationManager('sim ls_ci') state_recorder_LS_CI = StatesRecorder('LS_CI', robot_labels) sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder_LS_CI, simple_plot = False) -loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_LS_CI, plot_graphs = True) +loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_LS_CI, plot_graphs = False) ############################################################################## @@ -100,6 +98,6 @@ robot = RobotSystem('robot', robot_labels, loc_algo, distr_sys = True) sim = SimulationManager('sim gs_sci') state_recorder_GS_SCI = StatesRecorder('GS_SCI', robot_labels) sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder_GS_SCI, simple_plot = False) -loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_GS_SCI, plot_graphs = True) +loc_err_per_run, trace_per_run, t_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run(state_recorder_GS_SCI, plot_graphs = False) analyzer.algos_comparison([state_recorder, state_recorder_LS_cen, state_recorder_LS_BDA, state_recorder_LS_CI, state_recorder_GS_SCI, state_recorder_bound], only_trace = ['GS_CI_bound']) diff --git a/CoLo-AT/data_analysis/__pycache__/data_analyzer.cpython-36.pyc b/CoLo-AT/data_analysis/__pycache__/data_analyzer.cpython-36.pyc index dc6edb64e90bd2206b2c9cd8468823513f13048e..dffc9d42f386adb855d92b044eb516afee063aa8 100644 Binary files a/CoLo-AT/data_analysis/__pycache__/data_analyzer.cpython-36.pyc and b/CoLo-AT/data_analysis/__pycache__/data_analyzer.cpython-36.pyc differ diff --git a/CoLo-AT/data_analysis/__pycache__/realtime_plot.cpython-36.pyc b/CoLo-AT/data_analysis/__pycache__/realtime_plot.cpython-36.pyc index 3a8dd54cec228a7daaec9f21364b2a5091cbcb31..61c63f3de2a7898ac54f31c321a5c93a82e23461 100644 Binary files a/CoLo-AT/data_analysis/__pycache__/realtime_plot.cpython-36.pyc and b/CoLo-AT/data_analysis/__pycache__/realtime_plot.cpython-36.pyc differ diff --git a/CoLo-AT/data_analysis/data_analyzer.py b/CoLo-AT/data_analysis/data_analyzer.py index e1d352cc8738a5a72d9ea862f06b63c0e9ca7928..2de013b2ab69606998e3cbe93765adfdfa5a0e4d 100644 --- a/CoLo-AT/data_analysis/data_analyzer.py +++ b/CoLo-AT/data_analysis/data_analyzer.py @@ -146,7 +146,6 @@ class Analyzer(): time_arr.append((interval_start_time+unit_time_interval+interval_start_time)/2) interval_start_time = interval_start_time+unit_time_interval - print(data_recorder.name,': ') print('Avg location deviation errors per run: ', sum(loc_err_per_run)/len(loc_err_per_run)) print('Avg trace of state variances per run: ', sum(trace_per_run)/len(trace_per_run)) diff --git a/CoLo-AT/data_analysis/dataset_analyzer.py b/CoLo-AT/data_analysis/dataset_analyzer.py deleted file mode 100644 index a9e77f89bba62c029ab475cd927806c253af18af..0000000000000000000000000000000000000000 --- a/CoLo-AT/data_analysis/dataset_analyzer.py +++ /dev/null @@ -1,35 +0,0 @@ -import numpy as np -import os - -import initialization_datasets - -def dataset_analysis(dataset_name, duration, sampling_period): - # this function is to find the characteristic of the dataset. Given name of the dataset and period of sampling (in second), - # it will output v_max, r_max of for each robot during each period, also the mean and the STD of observation time interval - dataset_labels = [1,2,3,4,5] #all robots - [landmark_map, start_time, start_state_arr, measurement_data, odometry_data, groundtruth_data] = initialization_datasets.initialization_MRCLAMDatasets_multirobots(dataset_name, dataset_labels, duration) - - print 'robot\t\tv_max\t\tr_mean\t\tr_std\tnum_obser\ttime' - - for i, label in enumerate(dataset_labels): - t = start_time - while t <= start_time+duration-sampling_period: - v_seq = [obs['velocity'] for obs in odometry_data[i] if t+sampling_period > obs['time'] >= t] # create a list of velocity data for each sampling period - v_max = max(v_seq) - - r_seq = [obs['measurment_range'] for obs in measurement_data[i] if t+sampling_period > obs['time'] >= t] # create a list of measurement_range data for each sampling period - try: - r_max = max(r_seq) - r_mean = np.mean(r_seq) - r_std = np.std(r_seq) - - if r_std < 0.8: - print str(label)+'\t'+ str(v_max) + '\t\t'+ str(r_max) +'\t' +str(r_std) + '\t'+ str(len(r_seq)) + '\t' + str(t-start_time) + 's~' + str(t+sampling_period-start_time) +'s' - - except ValueError: - print '\tempty array' - - t = t + sampling_period - - return 1 - diff --git a/CoLo-AT/dataset_analysis.py b/CoLo-AT/dataset_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..2bd53386c4bc0438e07f05b9a6e7148b90283c15 --- /dev/null +++ b/CoLo-AT/dataset_analysis.py @@ -0,0 +1,24 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu May 16 16:26:29 2019 + +@author: william +""" + +import os, sys +sys.path.append(os.path.join(os.path.dirname(__file__), ".")) +from dataset_manager.realworld_dataset_manager import RW_Dataset_Manager + + +# load algorithms +sys.path.append(os.path.join(os.path.dirname(__file__), "localization_algos")) + +# dataset_path = "/Users/shengkangchen/Documents/CoLo/CoLo-D/CoLo-Datasets/official_dataset3/" +dataset_path = "/home/william/CoLo/CoLo-D/CoLo-Datasets/official_dataset3/" # for desktop Ubuntu + +robot_labels = [1,2,3] +duration = 180 # duration for the simulation in sec +testing_dataset = RW_Dataset_Manager('testing') +start_time, starting_states, dataset_data, time_arr = testing_dataset.load_datasets(dataset_path, robot_labels, duration) +testing_dataset.dataset_analysis(duration) \ No newline at end of file diff --git a/CoLo-AT/dataset_manager/__pycache__/realworld_dataset_manager.cpython-36.pyc b/CoLo-AT/dataset_manager/__pycache__/realworld_dataset_manager.cpython-36.pyc index f73b2cf653e3579d4ded1a002c64063cda1cb593..de81e6ebe727461593d79fb78612610ee8c62a80 100644 Binary files a/CoLo-AT/dataset_manager/__pycache__/realworld_dataset_manager.cpython-36.pyc and b/CoLo-AT/dataset_manager/__pycache__/realworld_dataset_manager.cpython-36.pyc differ diff --git a/CoLo-AT/dataset_manager/realworld_dataset_manager.py b/CoLo-AT/dataset_manager/realworld_dataset_manager.py index b52738571bcbcfca8ba1f015367f78f2eda62de3..ca35dc4ff2570bc76adea152f79fa575a6921408 100755 --- a/CoLo-AT/dataset_manager/realworld_dataset_manager.py +++ b/CoLo-AT/dataset_manager/realworld_dataset_manager.py @@ -200,6 +200,36 @@ class RW_Dataset_Manager: print("self.starting_states ", self.starting_states) return self.start_time, self.starting_states, self.dataset_data, self.time_arr + + def dataset_analysis(self, sampling_period): + # this function is to find the characteristic of the dataset. Given name of the dataset and period of sampling (in second), + analysis_result = {} + + odo_varibles = ['velocity', 'angular velocity'] + meas_varibles = ['measurment_range', 'bearing'] + + for i, label in enumerate(self.robot_lables): + t = self.start_time + while t <= self.start_time+self.duration-sampling_period: + for odo_variable in odo_varibles: + odo_seq = [robot_data[odo_variable] for robot_data in self.odometry_data[i] if t+sampling_period > robot_data['time'] >= t] # create a list of velocity data for each sampling period + odo_max = max(odo_seq) + odo_std = np.std(odo_seq) + + print('time: ', t, 'robot ID:', label, odo_variable, '_max:', odo_max, odo_variable, '_std:', odo_std) + + for meas_varible in meas_varibles: + meas_seq = [robot_data[meas_varible] for robot_data in self.measurement_data[i] if t+sampling_period > robot_data['time'] >= t] # create a list of velocity data for each sampling period + meas_max = max(meas_seq) + meas_std = np.std(meas_seq) + + print('time: ', t, 'robot ID:', label, meas_varible, '_max:', meas_max, meas_varible, '_std:', meas_std) + + t+=sampling_period + + + return 1 + def dataset_reset(self): self.data_trackers = {'odometry': np.ones((self.num_robots,), dtype=np.int),'measurement':np.ones((self.num_robots,), dtype=np.int), 'groundtruth':np.ones((self.num_robots,), dtype=np.int)} @@ -460,3 +490,6 @@ class RW_Dataset_Manager: return gt + + + diff --git a/CoLo-AT/localization_algos/ekf_gs_bound.py b/CoLo-AT/localization_algos/ekf_gs_bound.py index cece257226299d8289559bb806900d69ed9dbd4d..fe91db4da8083b8dc1da422d1765a0e39196a3b5 100644 --- a/CoLo-AT/localization_algos/ekf_gs_bound.py +++ b/CoLo-AT/localization_algos/ekf_gs_bound.py @@ -10,6 +10,10 @@ def rot_mtx(theta): class EKF_GS_BOUND(ekf_algo_framework): def __init__(self, algo_name): ekf_algo_framework.__init__(self, algo_name) + self.var_v = 0.04 + self.var_range = 0.7 + self.var_bearing = 0.3 + self.max_range = 3.5 def state_variance_init(self, num_robots): return 0.1*np.matrix(np.identity(2*num_robots), dtype = float) @@ -25,7 +29,7 @@ class EKF_GS_BOUND(ekf_algo_framework): [measurement_data, sensor_covariance] = sensor_data sigma_odo = sensor_covariance - var_v = 0.1 # variance of the velocity + var_v = self.var_v # variance of the velocity i = 2*index num_robots = int(len(s)/2) @@ -66,11 +70,12 @@ class EKF_GS_BOUND(ekf_algo_framework): H_i[1, i+1] = -1 H = rot_mtx(self_theta).getT()*H_i - var_range = 0.1 - d_max = pow(0.05,2) - var_bearing = pow(2.0 / 180, 2) + var_range = self.var_range + var_range = self.var_range + range_max = self.range_max + var_bearing = self.var_bearing - R = np.matrix(max(var_range, d_max, var_bearing)*np.identity(2)) + R = np.matrix(max(var_range, range_max, var_bearing)*np.identity(2)) sigma_s = (sigma_s.getI()+H.getT()*R.getI()*H).getI() return [s, orinetations, sigma_s] @@ -101,11 +106,12 @@ class EKF_GS_BOUND(ekf_algo_framework): H_ij[1, j+1] = 1 H = rot_mtx(self_theta).getT()*H_ij - var_range = 0.1 - d_max = pow(0.05,2) - var_bearing = pow(2.0 / 180, 2) - - R = np.matrix(max(var_range, d_max, var_bearing)*np.identity(2)) + var_range = self.var_range + var_range = self.var_range + range_max = self.range_max + var_bearing = self.var_bearing + + R = np.matrix(max(var_range, range_max, var_bearing)*np.identity(2)) sigma_s = (sigma_s.getI()+H.getT()*R.getI()*H).getI() return [s, orinetations, sigma_s]