From 145a70ddfb708bcbd48564138d062f8d6a061a36 Mon Sep 17 00:00:00 2001 From: "oceanpdoshi@g.ucla.edu" <oceanpdoshi@.ucla.edu> Date: Mon, 13 May 2019 14:22:57 -0700 Subject: [PATCH] dead code --- CoLo-AT/simulation_process/data_generation.py | 56 ------------------- 1 file changed, 56 deletions(-) delete mode 100644 CoLo-AT/simulation_process/data_generation.py diff --git a/CoLo-AT/simulation_process/data_generation.py b/CoLo-AT/simulation_process/data_generation.py deleted file mode 100644 index 033695b..0000000 --- a/CoLo-AT/simulation_process/data_generation.py +++ /dev/null @@ -1,56 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Tue Feb 13 16:11:36 2018 - -@author: william -""" - -class DataGenerator(): - def init_(self): - pass - - def within_map(self, loc): - ''' - For runtime self_generated data, - Parameters: - loc: array, shape = (2,1) - robot's location for [x, y] - Return: Boolean - True if within the map, False if not - ''' - center_point = [0,0] - if sqrt(pow(loc[0]-center_point[0], 2)+pow(loc[1]-center_point[1], 2)) > d_max: - return False - else: - return True - def generate_propgation_data(self, current_loc, current_orientation): - - ''' - To generate propagtion data randomly so that it will run within predefined map *assuming orientation is perfect - Parameters: - current_loc: array, shape = (2,1) - robot's current location for [x, y] - current_orientation: float - robot's current orientation in radian - Return array, shape = (2,1) - ''' - [meas_v, meas_a_v] = [random.uniform(-max_v,max_v), random.uniform(-max_a_v, max_a_v)] - actual_v = meas_v + random.normal(0, sqrt(var_u_v)) - pre_update_position = [current_loc[0] + cos(current_orientation)*actual_v*delta_t, current_loc[1] + sin(current_orientation)*actual_v*delta_t] - - while(not within_map(pre_update_position)): - [meas_v, meas_a_v] = [random.uniform(-max_v,max_v), random.uniform(-max_a_v, max_a_v)] - actual_v = meas_v + random.normal(0, sqrt(var_u_v)) - pre_update_position = [current_loc[0] + cos(current_orientation)*actual_v*delta_t, current_loc[1] + sin(current_orientation)*actual_v*delta_t] - - orientation = current_orientation + meas_a_v*delta_t - actual_loc = pre_update_position - return [actual_v, meas_v, orientation, actual_loc] - - def generate_measurement_data(self, observer_loc, observee_loc, observer_orientation): - delta_x = observer_loc[0] - observee_loc[0] - delta_y = observer_loc[1] - observee_loc[1] - dis = sqrt(delta_y*delta_y + delta_x*delta_x) + random.normal(0, sqrt(var_dis)) - bearing = atan2(delta_y, delta_x) + random.normal(0, sqrt(var_angle)) - observer_orientation - return [dis, bearing] -- GitLab