
Sagar Doshi

Colo-AT Simulated Data Debug Report

1

The purpose of this document is to aid future users in debugging their usage of Colo-AT, and to

acclimate new users to its implementation.

General Debugging Structure

The first step in running/debugging Colo-AT using simulated data is to create a test script.

1. Import the necessary python packages, Colo-AT Modules, and Localization Algorithms. This

Report focuses on use of the simulated dataset manager, highlighted in red.

Check
Simulation
Parameters

Check SDM
and Data
Generator

Check Sim
Manager:
mes, odo, com

Check Rob
Loc Updates:
Cent vs Distr

Check

localization
Algorithm

2

If you run into import errors here are some quick fixes/notes:

• If you add elements to the test script, don’t forget to import additional libraries

• Add __init__.py file to additional folders created w/modules used in the test script.

• A lot of python linters mark non-existent import errors (like in the sample code above).

See linter documentation for getting rid of this.

• Depending on if you moved folders/files in the repository, you may have to add/remove

elements from the system path. Google documentation for how Python searches for

different modules in a repository for more info on this\how to handle on different OS.

• Google the exact import error you are getting (most import errors can be quickly

resolved this way)

2. Set-Up the simulation to use generated data. This template file is test_simulation_sagar.py

3

See the Colo-AT manual on the GitLab repository to see the parameters and I/O of all the

modules. Make sure to check that the simulation parameters are reasonable. “Reasonable”

means to check for issues such as:

• Negative quantities passed as arguments

• The noise/spread parameters are std. deviations, not variances

• Check decimal errors (ex: error of 0.1 vs 0.01)

• Check units: [m], [s], [rad]

3. Run the test script w/desired parameters and localization algorithm. Check if the results are

reasonable using a few techniques.

(a) When generating the data, there is pre-built test function that displays informative

distributions describing the generated data. An example is shown below.

Figure 1 – Data Verifications Subplots. From top to bottom, the plots show the following:

• Distribution of 𝑣𝑑𝑖𝑓𝑓 = 𝑣𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑣𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 ~ 𝑁(0, 𝜎𝑣)

• Distribution of 𝜔𝑑𝑖𝑓𝑓 = 𝜔𝑎𝑐𝑡𝑢𝑎𝑙 − 𝜔𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 ~ 𝑁(0, 𝜎𝜔)

• Distribution of 𝜃𝑑𝑖𝑓𝑓 𝑎𝑛𝑑 𝑡𝑑𝑖𝑓𝑓. These should be 0 given that there is no noise with respect to groundtruth

orientation or time.

• Distribution of 𝑟𝑑𝑖𝑓𝑓 = 𝑟𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ~ 𝑁(0, 𝜎𝑟) (Compared using Euclidean distance formula)

• Distribution of 𝜙𝑑𝑖𝑓𝑓 = 𝜙𝑎𝑐𝑢𝑡𝑎𝑙 − 𝜙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ~ 𝑁(0, 𝜎𝜙)

• Plots of 𝑟𝑑𝑖𝑓𝑓 and 𝜙𝑑𝑖𝑓𝑓 vs. time. These can be used to spot outliers (if necessary). This example does not

show much in terms of significant outliers.

https://docs.google.com/document/u/1/d/1XOe8ZwLlM2DbLjeteLUff9cUuHIKdVW1M-U7jzvrrok/edit

4

(b) Assuming the generated data meets expectations, then the trace of the covariance matrix

and a plot of the RMS error can be used to determine correctness/reasonability of simulation

results.

Figure 2 – Example trace for EKF_GS_CI_2 algorithm in Colo-AT.

Looking at the mathematical implementation for this algorithm, the RMS (root-mean square of the location error)

does NOT scale with distance, but the trace of the state variance 𝜎2 does. In this example there is a single

landmark, and a robot with a 360° view is moving in a circle towards and away from the landmark. As the robot

gets farther from the landmark, the RMS does not change, but 𝜎2 grows and recedes. This qualitatively verifies the

simulation.

5

(c) Sometimes it is easier to visualize/figure out what’s going on during the simulation with a

live animation.

This function creates an animated plot of the robots’ actual movements vs the algorithm

estimation of the location. In addition, there is a live-updated view of the RMS and 𝜎2 similar to

figure 2.

Techniques (a), (b), and (c) provide a quick way to confirm the results of the simulation with

generated data. If the simulation results/generated data do not meet expectations, then here

are some pointers for debugging/tracing through Colo-AT from my experience doing so.

The general outline is reproduced here, and the current step is the 2nd box.

The Simulated Dataset Manager and Data Generator are two editable classes whose I/O is

described in the Colo-AT user manual.

Within the Simulated Dataset Manager:

• Double check initialization of starting states: this function can be modified to meet user

requirements (at the risk of invalid starting states being provided).

• The general structure for the dataset_data array is:

o {‘odometry’: [], ‘measurement’: [], ‘groundtruth’: []}

o Each subarray within the top arrays represent data for on individual robot (in

order of robot_labels provided to simulation)

• Trace through the following functions:

o respond()

o get_dataline()

o find_measurement()

These functions are built case-wise, and this can be used to determine the potential source of

error (especially if these have been modified to custom-fit user input).

Check
Simulation
Parameters

Check SDM
and Data
Generator

Check Sim
Manager:
mes, odo, com

Check Rob
Loc Updates:
Cent vs Distr

Check

localization
Algorithm

6

Within the Data Generator:

• verify_generated_data() is the function that created the distribution plots to see if

generated data was reasonable

• Comment out the noise distribution if you want to investigate the effect off noise on the

data (then go through steps 3 (a)-(c) to see if this created the expected/desired change

on the simulation results).

o Similarly, you can eliminate noise and add a bias to see if this produces the

expected effect

• Modify some of the internal parameters such as radian_step in circular data generation

to better fit desired simulation

• The same generate_odometry_data() and generate_measurement_data() functions are

used for all data generation – the only thing that changes is groundtruth data

• The primary bugs/changes would be made within:

o generate_circular_data()

o generate_random_data()

o generate_straight_line_data()

• recall that both orientation and bearing 𝜃, 𝜙 are between −𝜋 𝑎𝑛𝑑 𝜋

• 𝜙 is shifted to be within the local coordinate frame of the robot

If the error is beyond the Simulated DataSet Manager or DataGenerator, this means that

something may be occurring with how data is being transferred throughout Colo-AT. It is then

worthwhile to view the overall class structure of Colo-AT to see where the issue originates.

Figure 3 – Courtesy of William Chen from the Colo-AT Manual.

This figure directs a trace through of the sim manager → robot system → state recorder

7

The Simulated Dataset Manager communicates with the simulation manager via the request

response class, so if invalid requests or invalid responses are sent, this ruins the entire

simulation. Beyond this, the sim manager facilitates the running of the robot system and state

recorder. It is the “highest-level” of the overall simulation process.

Delving into its functions, the simulated dataset manager currently only supports the mode of:

sim_process_native().

Within this function, there are two operations that happen.

• localization_update()

• communication

The localization update is in the robot_system, and the robot system also contains the

initializations of the covariance matrices (which should be modified by the user to be close to

the noise passed as simulation parameters).

 A note about the communication protocol is that there must be at least 3 robots for simulated

communication to function. Print statements can be inserted into the if comm: … portion of the

sim manager to see if the simulated communication protocol is functioning as expected.

The sim manager can be used to print out various metrics/data fetched from:

• State recorder

• robot system

o centralized

o distributive

• localization_algorithm

And these metrics/data include but are not limited to:

• Q, R Matrices

• z, 𝑧̂

• covariance matrix

• robot state

This is the starting point of viewing what mathematical quantities are being incorrectly

calculated, and this can lead to the source of the error.

8

The last part of this document focuses on a trace through that was used to pinpoint the source

of some simulation discrepancy.

The discrepancy is shown in the following two figures.

Figures 4 & 5 – Displays of RMS/trace for one robot, Centralized_EKF

In figure 4, the robot is moving in a straight line towards a single landmark.

In figure 5, the robot is moving a circle towards and away from single landmark.

In both cases, the RMS clearly grows and subsides as the robot gets farther/closer to the

landmark.

After verifying the Simulated Dataset Manager and Data Generator, print statements were used

inside the sim manager to print out important metrics. Most notably, the localization algorithm

was modified to also return |𝑧 − 𝑧̂| which is the middle plot in both figures 4 and 5.

There did not appear to be any discrepancies in the transfer in data, so taking a closer look at

the algorithm implementation yielded an unintended noise dependency on distance. This

resolved the issue.

Template code used to create the |𝑧 − 𝑧̂| plot is provided below. Note that the plotting code

was in the test script, and the only modification to the other modules of Colo-AT was the

“passing-up” of data/information.

9

The diffs variable is |𝑧 − 𝑧̂| , and this was passed from the localization algorithm to the robot

system to the state recorder before finally reaching the simulation manager which would return

the arrays of |𝑧 − 𝑧̂| for varying times to the test script.

Performing a similar trace through going through:

sim manager → robot system → state recorder

Before checking the localization algorithm eliminates the possibility of data transfer/code issues

which may be quicker to resolve than reformulating the mathematics of an algorithm.

Overall, I hope this document is helpful for users trying to run Colo-AT, and I hope it aids in

resolving potential errors that occur when using the Simulated Dataset Manager & Data

Generator.

