Sagar Doshi

Colo-AT Simulated Data Debug Report

The purpose of this document is to aid future users in debugging their usage of Colo-AT, and to
acclimate new users to its implementation.

General Debugging Structure

Check
Simulation
Parameters

Check SDM Check Sim Check Rob Check
and Data Manager: Loc Updates: localization
Generator mes, odo, com Cent vs Distr Algorithm

The first step in running/debugging Colo-AT using simulated data is to create a test script.

1. Import the necessary python packages, Colo-AT Modules, and Localization Algorithms. This
Report focuses on use of the simulated dataset manager, highlighted in red.

port 0s, SYyS
t numpy as np
math import pi, sqrt

1 dataset_manager.realworld dataset manager import RW Dataset Manager
; dataset manager.simulated dataset manager import SimulatedDataSetManager
1 simulation _process.sim manager import SimulationManager
; robots.robot system import RobotSystem
1 simulation_process.state_recorder import StatesRecorder
from data_analysis.data_analyzer import Analyzer
n data_analysis.realtime_plot import animate_plot

sys.path.append(os.path.join(os.path.dirname( file ), "localization algos™))

n centralized ekf import Centralized EKF
n ekf_ls _bda import EKF_LS_BDA
ekf 1s ci import EKF_LS CI

ekf gs bound import EKF_GS BOUND
n ekf gs ci2 import EKF_GS_CI2
1 ekf_gs sci2 import EKF_GS_SCI2




If you run into import errors here are some quick fixes/notes:

e If you add elements to the test script, don’t forget to import additional libraries

e Add__init__.py file to additional folders created w/modules used in the test script.

e Alot of python linters mark non-existent import errors (like in the sample code above).
See linter documentation for getting rid of this.

e Depending on if you moved folders/files in the repository, you may have to add/remove
elements from the system path. Google documentation for how Python searches for
different modules in a repository for more info on this\how to handle on different OS.

e Google the exact import error you are getting (most import errors can be quickly
resolved this way)

2. Set-Up the simulation to use generated data. This template file is test_simulation_sagar.py

np.random.seed(1)

landmarks = {11: [1,2], 12: [®,1], 13: [-1,8], 14: [@,-1]}

robot_labels = [1,2,3]

duration = 128
delta_t = @.2

sigma_v = 8.9

landmarks, duration, robot_la
|_noise, measurement_range_noise ise, bearing i =phi_noise,

start_time, starting states, dataset data, time arr = testing dataset.simulate dataset('r
', robot_labels)

KF')
loc_algo, distr,

cim = SimulationManager('sim")
state_recorder = StatesRecorder('Centralized EKF', robot_labels)

end_time # sim.sim_process_native(robot_labels, testing_dataset, robot, state_recorder, simple_plot = 5 » simulated comm =

loc_err_per_run, state_err_per_run, trace_per_run, time_arr = analyzer.calculate_loc_err_and_trace_state_variance_per_run{state_recorder, plot_graphs =

animate_plot{robot_labels, state_recorder, analyzer, testing_dataset.get_landmark_map()}




See the Colo-AT manual on the GitLab repository to see the parameters and I/0 of all the

modules. Make sure to check that the simulation parameters are reasonable. “Reasonable”
means to check for issues such as:

e Negative quantities passed as arguments

e The noise/spread parameters are std. deviations, not variances
e Check decimal errors (ex: error of 0.1 vs 0.01)

e Check units: [m], [s], [rad]

3. Run the test script w/desired parameters and localization algorithm. Check if the results are
reasonable using a few techniques.

start tine, starting states, dataset data, tine arr = testing dataset. sinulate dataset(

(a) When generating the data, there is pre-built test function that displays informative
distributions describing the generated data. An example is shown below.

211 —_-.-*—_-_.L

- o
. e
-0.15 -0.10 -0.05 0.00 0.05 0.10 ]
v_diff [m/s]
251 iﬂ.———
0 T
-0.0003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004
w_diff [r/s]
500 1 I
o
-0.4 -0.2 0.0 0.2 0.4
o_diff [r]
500 1
o
-0.4 =0.2 0.0 0.4
delta_t_diff [s)
200] I I I I
o
-0.2
meas_diff [m]
200 ]
. *—_
-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075
E bearing_diff [r]
; 0.25
@ -0.25
E_ (] 20 40 60 80 100 120
= t
E
...
g 01
E (] 20 40 60 80 100 120

Figure 1 — Data Verifications Subplots. From top to bottom, the plots show the following:

e Distribution of Vg;rr = Vactuar — Vrecordea ~ N (0, 0)

e Distribution of Waiff = Wactual — WDrecorded ~N(0,0,)

Distribution of Bdiff and Lairy- These should be 0 given that there is no noise with respect to groundtruth
orientation or time.

Distribution of 7y4;rf = Tactuar — Tmeasurea ~ N(0, 0;) (Compared using Euclidean distance formula)
e Distribution of ¢diff = dacutal — Pmeasurea ~ N (0, 0¢)

Plots of 74;¢f and ¢ vs. time. These can be used to spot outliers (if necessary). This example does not
show much in terms of significant outliers.


https://docs.google.com/document/u/1/d/1XOe8ZwLlM2DbLjeteLUff9cUuHIKdVW1M-U7jzvrrok/edit

(b) Assuming the generated data meets expectations, then the trace of the covariance matrix
and a plot of the RMS error can be used to determine correctness/reasonability of simulation
results.

end_time, diffs = sim.sim_process_native(robot_labels, testing_dataset, robot, state recorder, simple_plot = , comm= , simulated comm =

(%) Figure 1 — O
sim Correctness analysis
Estimation deviation error
0.15 A
E 0.10
w
= 0.05 A
0.00 A T T T T T T T
0 20 40 60 80 100 120
Time[s]
Trace of state variance
— 0.075 -
~
¢
E 0.050-
l'ﬂl
£ 0.025 -
o
[
0'000 5 1 1 T I 1 1 1
0 20 40 60 80 100 120

Figure 2 — Example trace for EKF_GS_Cl_2 algorithm in Colo-AT.

Looking at the mathematical implementation for this algorithm, the RMS (root-mean square of the location error)
does NOT scale with distance, but the trace of the state variance g2 does. In this example there is a single
landmark, and a robot with a 360° view is moving in a circle towards and away from the landmark. As the robot
gets farther from the landmark, the RMS does not change, but ¢ grows and recedes. This qualitatively verifies the
simulation.



(c) Sometimes it is easier to visualize/figure out what’s going on during the simulation with a
live animation.

animate plot(robot labels, state recorder, analyzer, testing dataset.get landmark map())

This function creates an animated plot of the robots’ actual movements vs the algorithm

estimation of the location. In addition, there is a live-updated view of the RMS and ¢2 similar to

figure 2.

Techniques (a), (b), and (c) provide a quick way to confirm the results of the simulation with
generated data. If the simulation results/generated data do not meet expectations, then here
are some pointers for debugging/tracing through Colo-AT from my experience doing so.

Check Check SDM Check Sim Check Rob Check
Simulation and Data Manager: Loc Updates: localization
Parameters Generator mes, odo, com Cent vs Distr Algorithm

The general outline is reproduced here, and the current step is the 2™ box.

The Simulated Dataset Manager and Data Generator are two editable classes whose I/O is
described in the Colo-AT user manual.

Within the Simulated Dataset Manager:

e Double check initialization of starting states: this function can be modified to meet user
requirements (at the risk of invalid starting states being provided).
e The general structure for the dataset_data array is:
o {‘odometry’: [], ‘measurement’: [], ‘groundtruth’: []}
o Each subarray within the top arrays represent data for on individual robot (in
order of robot_labels provided to simulation)
e Trace through the following functions:
o respond()
o get_dataline()
o find_measurement()

These functions are built case-wise, and this can be used to determine the potential source of
error (especially if these have been modified to custom-fit user input).




Within the Data Generator:

e verify_generated_data() is the function that created the distribution plots to see if
generated data was reasonable
e Comment out the noise distribution if you want to investigate the effect off noise on the
data (then go through steps 3 (a)-(c) to see if this created the expected/desired change
on the simulation results).
o Similarly, you can eliminate noise and add a bias to see if this produces the
expected effect

measurement_range = .calc_distance(robot loc, landmark loc) + np.random.normal(loc=8.8,scale= .measurement_range noise)

e Modify some of the internal parameters such as radian_step in circular data generation
to better fit desired simulation
e The same generate_odometry_data() and generate_measurement_data() functions are
used for all data generation —the only thing that changes is groundtruth data
e The primary bugs/changes would be made within:
o generate_circular_data()
o generate_random_data()
o generate_straight_line_data()
e recall that both orientation and bearing 6, ¢ are between —m and
e ¢ is shifted to be within the local coordinate frame of the robot

If the error is beyond the Simulated DataSet Manager or DataGenerator, this means that
something may be occurring with how data is being transferred throughout Colo-AT. It is then
worthwhile to view the overall class structure of Colo-AT to see where the issue originates.

CoLo-AT Structure:
CoLo-AT
/ Simulation Process \
Distributive
Robot
e Sensor Data \

Robot System

Robots’
Groundtruths

\ 4

Status

Recorder
Robots’ State Estimation

Simulation
ReSUItS

Figure 3 — Courtesy of William Chen from the Colo-AT Manual.

This figure directs a trace through of the sim manager — robot system — state recorder

6



The Simulated Dataset Manager communicates with the simulation manager via the request
response class, so if invalid requests or invalid responses are sent, this ruins the entire
simulation. Beyond this, the sim manager facilitates the running of the robot system and state
recorder. It is the “highest-level” of the overall simulation process.

Delving into its functions, the simulated dataset manager currently only supports the mode of:
sim_process_native().
Within this function, there are two operations that happen.

e localization_update()
e communication

The localization update is in the robot_system, and the robot system also contains the
initializations of the covariance matrices (which should be modified by the user to be close to
the noise passed as simulation parameters).

A note about the communication protocol is that there must be at least 3 robots for simulated
communication to function. Print statements can be inserted into the if comm: ... portion of the
sim manager to see if the simulated communication protocol is functioning as expected.

The sim manager can be used to print out various metrics/data fetched from:

e State recorder
e robot system
o centralized
o distributive
e localization_algorithm

And these metrics/data include but are not limited to:

e (Q, R Matrices

o 7,2

e covariance matrix
e robot state

This is the starting point of viewing what mathematical quantities are being incorrectly
calculated, and this can lead to the source of the error.



The last part of this document focuses on a trace through that was used to pinpoint the source
of some simulation discrepancy.

The discrepancy is shown in the following two figures.

® [ ® &) Figure 3 = s} X
sim Correctness analysis
Estimation deviation error
* 8 —_— X 120
E —y -
14 — £ 100
z ™
6 5
o - E 80
0 20 4 60 80 100 120 E ‘ g
T = s
ime[s] 2‘ . | | ' ‘ 5 6
Trace of state variance % | [ £
= I | g %
I [ °
€ 2 MVAVTANE NI ) <
, 0.05 — YOIV ’ UL N AAGNL 8 20
=] 0 bt
@ 0.00 0
0 20 40 60 80 100 120 o 20 40 60 80 100 120 0 20 40 60 80 100 120
Time [s] t(s] t(s]
al €3 +Q/=| #€d +Q= # €3 +Q=|
%) figure 1 - [u] X ig - & Figure 3 _
sim Correctness analysis
Estimation deviation error
6 — 100
E4 8 y L
£ — 3
2 £ 8o
ol s ST © s AL o o £
0 20 40 60 80 100 120 IE 5 60
Time(s] . 8
A g
Trace of state variance N 5 %0
3 B
N ]
£ 0.075 5 E
& 0050 e 8 2
o
E 0.025
2 0
70,0001 - T - - - T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120 o 20 40 60 80 100 120
Time [s] t[s] tls
#€3 Ha= B €3 #Qa/= al¢> +a= B

Figures 4 & 5 — Displays of RMS/trace for one robot, Centralized_EKF
In figure 4, the robot is moving in a straight line towards a single landmark.
In figure 5, the robot is moving a circle towards and away from single landmark.

In both cases, the RMS clearly grows and subsides as the robot gets farther/closer to the
landmark.

After verifying the Simulated Dataset Manager and Data Generator, print statements were used
inside the sim manager to print out important metrics. Most notably, the localization algorithm
was modified to also return |z — Z| which is the middle plot in both figures 4 and 5.

There did not appear to be any discrepancies in the transfer in data, so taking a closer look at
the algorithm implementation yielded an unintended noise dependency on distance. This
resolved the issue.

Template code used to create the |z — Z| plot is provided below. Note that the plotting code
was in the test script, and the only modification to the other modules of Colo-AT was the
“passing-up” of data/information.



x_diffs
y_diffs

times = np.arange(®, 120, delta t)

x diffs = list(filter( a: a 1= -1, x diffs))
x_diffs = [np.asscalar(x) for x x_diffs]
y_diffs = list(filter( a: a = -1, y diffs))
y_diffs = [np.asscalar(y) for y y_diffs]

robot_x = [gt["> "] for gt dataset_data['g
robot_y [gt]'y pos'] for gt dataset_data[ "groundtruth][@]]

robot_locs = [ [robot_x[i], robot_y[i] ] for i range(8, len{robot_x))]
distances = [calc_distance(landmarks[11], robot loc) for robot_ loc robot_locs]
fig = plt.figure(2)

plt.plot(times, x_diffs, times, y diffs)

at| [m] ")

plt.xlabel('t [s]")
ha

plt.ylabel(" |z-z

plt.legend([ 'x", 'y'], loc="upper right")
fig = plt.figure(3)
plt.plot(times, distances)

plt.xlabel( 't )
plt.ylabel(" ( = o landmark [m]")

plt.show()

The diffs variable is |z — Z| , and this was passed from the localization algorithm to the robot
system to the state recorder before finally reaching the simulation manager which would return
the arrays of |z — Z| for varying times to the test script.

Performing a similar trace through going through:
sim manager — robot system — state recorder

Before checking the localization algorithm eliminates the possibility of data transfer/code issues
which may be quicker to resolve than reformulating the mathematics of an algorithm.

Overall, I hope this document is helpful for users trying to run Colo-AT, and | hope it aids in
resolving potential errors that occur when using the Simulated Dataset Manager & Data
Generator.



